博碩士論文 986404005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.116.20
姓名 吳文傑(Wen-Chieh Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Stress-history dependent porosity and permeability in siliciclastic sedimentary rocks - from laboratory tests to in-situ applications)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下流體的富集與移棲是現今地球科學重要課題之一,而岩石之孔隙率和滲透率分別為估算儲集層儲量和流體移動速率的重要參數。然而流體流動特性之應力相依性以及其與深度之關係至今仍然有一些爭議。本研究利用高圍壓孔隙滲透儀(YOKO2)進行岩石孔隙率與滲透率之室內量測,並以實驗獲得之壓密曲線嘗試建立應力歷史相依(stress-history dependent)之孔隙率與滲透率之模型。試驗試體來自兩個場址:台灣車籠埔斷層深鑽計畫(Taiwan Chelungpu-fault Drilling Project, TCDP)之深鑽井與二氧化碳封存前導計畫之三鶯一號鑽井(well Sanying-1),試體之所屬地層主要為台灣西部麓山帶之地層,岩石屬於矽質碎屑沉積岩,地層分別為中新世至更新世之南莊層、桂竹林層、錦水頁與卓蘭層。

本研究主要將分析方向分為五個部分:1. 利用TCDP試體進行室內孔隙率滲透率量測,並建立應力相依之孔隙率滲與透率模型以及應力相依之比儲水係數,實驗結果顯示壓密曲線符合冪次律,經室內實驗加壓解壓後呈現不可回復之變形,進而反映至孔隙率與滲透率隨有效圍壓之變化。2. 利用孔隙率量測結果,並考慮應力歷史對於孔隙率之影響,建立應力歷史相依之孔隙率模型。並利用模型進行線性迴歸獲得每個試體之最大預壓密應力,結果顯示,於TCDP三義斷層上盤之岩層,因侵蝕所造成之釋放應力平均為29.48 MPa,進一步估算TCDP場址三義斷層上盤之抬升量(2482 m)與滑移量(11.5 km)。3. 利用應力歷史相依之孔隙率模型估算TCDP鑽井之孔隙率與深度之關係,與井測孔隙率作比對,結果顯示成功預測應力歷史對孔隙率-深度關係之影響,孔隙率變化趨勢與井測之孔隙率一致,主要受控於有效應力、岩性變化與應力歷史之影響。4. 利用已受抬升作用之三鶯一號井試體與井測資料結合應力歷史相依之孔隙率模型,成功推估未抬升之相對應地層孔隙率與深度之關係,並能推算灌注壓力造成岩石有效應力下降對孔隙率變化之影響。5. 利用TCDP試體,建立應力歷史相依之滲透率模型,估算滲透率與深度之關係。於TCDP鑽井,完整砂岩滲透率為10-12-10-13 m2,完整泥岩滲透率為10-17-10-19 m2。並利用Oda之模型估算裂隙滲透率(10-12-10-15 m2),估算裂隙滲透率與深度之關係,發現估算岩石滲透率時,泥岩僅需考慮裂隙滲透率,而砂岩則須評估完整岩石對整體滲透率之影響。

摘要(英) The storage and the migration of underground fluid is currently important issue in earth science. Rock permeability and porosity play an important role in determining the reserve of reservoir and the flow rate of fluid. However, the stress dependence of fluid flow properties and the relation between depth and fluid flow properties are controversial. In this study, we use an integrated permeability/porosity measurement system (YOKO2) to measure rock permeability and porosity with different confining pressure in laboratory works. Then, stress-history dependent porosity and permeability can be determined by compaction curves. Tested samples were collected from two sites: the boreholes of Taiwan Chelungpu-fault Drilling Project (TCDP) and well Sanying-1 of preliminary CO2 geological sequestration project. Samples are siliciclastic sedimentary rocks that belongs the formation in Western Foothills including Nanchuang Formation, Kueichulin Formation, Chinshui Shale and Cholan Formation (from Miocene to Pleistocene).

In this study, the research direction will be divided into five parts: (1.) We use samples from TCDP to do laboratory measurements and establish stress dependent porosity, permeability and specific storage coefficient. The results show the variation of fluid flow properties with stress follows power law. (2.) We use the porosity compaction curves to build stress-history dependent porosity model through taking the effect of maximum effective stress into account. The average determined maximum effective stress is 29.48 MPa. Moreover, we estimate the amount of uplift (2482 m) and slip (11.5 km) on the hanging wall of Sanyi Fault. (3.) We use stress-history dependent porosity model and propose a method to estimate porosity-depth relationship in TCDP borehole A. The results show the porosity trend is the same in comparison with sonic-derived porosity logging data and we successfully evaluate the effect of stress history. (4.) According to the proposed method of (3.), we evaluate porosity-depth relationship in a deeper and steady burial formation by the samples and logging data from the same and uplifted formation in a shallower borehole (well Sanying-1). At the same time, we determine effect of injection pressure on the porosity variation. (5.) We use the compaction curves to establish the stress-history dependent permeability model, and use this model to estimate the permeability-depth relationship. The permeability of intact sandstone is 10-12-10-13 m2, whereas the permeability of intact mudrock is 10-17-10-19 m2 at the depths of TCDP borehole. On the other hand, we use Oda’s model to estimate the fracture permeability and evaluate the fracture permeability-depth relationship (10-12-10-15 m2). The results show only the fracture permeability should be considered when we estimate mudrock permeability at TCDP site, but the effect of intact sandstone on overall sandstone permeability need to be evaluated.

關鍵字(中) ★ 孔隙率
★ 滲透率
★ 應力歷史
★ 有效應力
★ 矽質沉積岩
關鍵字(英) ★ porosity
★ permeability
★ stress histroy
★ effective stress
★ siliciclastic sedimentary rock
論文目次 Chinese abstract………………………………...………..…………………………….............. i

English abstract………………………………..…………………...………………………….. ii

Table of contents……………………………………………………….……………………... iii

List of figures…………………………………………………………………………............. vi

List of tables…………………………………………………………………………………... ix

List of symbols…………………………………………………………………………………x

1. Introduction………………..…………………………………………………... 1

2. Geological setting……………………………………………………………. 10

2.1 Sanying-1 borehole and other shallow boreholes……………………………. 10

2.2 TCDP boreholes…………………………………………………………….... 12

3. Stress dependence of the permeability and porosity of sandstone and shale from TCDP borehole-A……………………………………………….……… 19

3.1 Laboratory measurement system……………………………………………... 19

3.2 Experimental results………………………………………………………….. 22

3.2.1 Models for describing the effective confining pressure dependency of permeability…………………………………………………………………... 24

3.2.2 Models for describing the effective confining pressure dependency of porosity…………………………………………………………………31

3.2.3 Stress dependent specific storage……………………………………………. 32

3.3 Discussion……………………………………………………………………. 35

3.3.1 The influence of the deformation mechanism………………………………... 35

3.3.2 The influence of stress range and maximum overburden on parameter estimates…………………………………………………………………….... 36

3.3.3 Influence of sample anisotropy and sample length………………………....... 38

3.3.4 The influence of using gas as a fluid on the stress dependency of permeability…………………………………………………………………... 39

3.3.5 Porosity sensitivity exponent…………………………………………….……40

4. Determining the maximum overburden along thrust faults using a porosity versus effective confining pressure curve………………………………..…... 43

4.1 Determining the maximum effective stress of sedimentary rocks from porosity measurements under confining stress………………………………………... 43

4.1.1 Compaction curves and maximum overburden………………………….…… 43

4.1.2 Maximum overburden of tested rocks…………………………………...…… 45

4.2 Determining the eroded overburden of tested samples…………………….… 46

4.2.1 Density logs of TCDP borehole A………………………………………….… 46

4.2.2 In-situ and maximum overburden……………………………………………. 47

4.2.3 Eroded overburden…………………………………………………………… 50

4.3 Validation of the proposed local method using a regional method (geological profile)………………………………………………………………………... 50

4.3.1 Regional geological setting near the TCDP borehole………………………… 50

4.3.2 Determining the thickness of the eroded formation from the geological profile……………………………………………………………………...…. 51

4.3.3 Determining the density of the eroded strata using the proposed method…… 52

4.4 Discussion……………………………………………………………………. 53

4.4.1 The mechanisms involved in the proposed method………………………….. 53

4.4.2 The influence of tectonic activity and related stress path……………………. 54

4.4.3 The influence of overpressure and lithology………………………………… 57

4.4.4 Laboratory-based method and well- logging-based method…………………. 59

4.4.5 Inferring the thrust displacement……………………………………………... 60

5. Estimating the porosity-depth relationship of sedimentary rocks from a stress-history dependent porosity model…………………………...………… 61

5.1 Stress-history dependent porosity model…………………………...………… 61

5.2 Propose method for estimating the porosity-depth relationship of sedimentary rocks………………………………………………………………………….. 61

5.2.1 Determining the representative lithology and material constants……………. 63

5.2.2 Determining the in-situ effective stress and the stress history……………..… 63

5.2.3 Determining the porosity-depth relationship…………………………………. 63

5.3 Validation of the proposed method…………………………………………… 64

5.3.1 Porosity-depth relationship from the proposed method…………………….... 64

5.3.2 Comparing the porosity-depth relationships derived from the proposed method and the sonic logging data……………………………………………………. 68

5.4 Discussion……………………………………………………………………. 68

5.4.1 High depth dependency of the measured porosity at shallow depth…………. 68

5.4.2 The measured large porosity jump near Sanyi Fault…………………………. 69

5.4.3 Measured high variability of the porosity……………………………………. 71

5.4.4 The prospects of the proposed method…………………………………..…… 73

6. Influence of stress history on estimates of the porosity of sedimentary rocks: Implications for geological CO2 storage in northern Taiwan……………...…. 74

6.1 Estimation of porosity-depth relationship of potential CO2 reservoirs………. 76

6.2 Results………………………………………………………………………... 77

6.2.1 Curves of porosity vs. effective confining stress and stress-history dependent porosity model………………………………………………………………... 77

6.2.2 Porosity-depth relationship of deep CO2 reservoirs predicted using shallow borehole data…………………………………………………………………. 79

6.3 Discussion……………………………………………………………………. 81

6.3.1 Influence of stress history on porosity-depth relationship in normally and overconsolidated rocks……………………………………………………….. 81

6.3.2 Impact of the injection pressure on estimated rock porosities……………….. 83

7. Estimation on the relation between depth and stress-history dependent permeability of sedimentary rocks…………………………………………… 83

7.1 Permeability-depth relationship…………………………………………….… 86

7.1.1 Permeability-stress curve derived from laboratory tests……………………... 86

7.1.2 Stress-history dependent porosity-permeability curve……………………….. 87

7.1.3 Determining the permeability variation with depth…………………………... 89

7.2 Fracture permeability…………………………………………………………. 91

7.2.1 Permeability tensor and crack tensor…………………………………………. 91

7.2.2 Parameters in crack tensor……………………………………………………. 92

7.2.2.1 The distribution density function of fracture orientation…………………….. 92

7.2.2.2 The density function of fracture length……………………………….……… 93

7.2.2.3 The density function of fracture aperture…………………………………….. 93

7.2.3 Determining fracture permeability-depth relationship……………………...... 94

7.3 Discussion………………………………………………………………….… 98

8. Conclusions……………………………………………………....................... 99

8.1 Conclusions of Chapter 3…………………………………………………...… 99

8.2 Conclusions of Chapter 4….……………………………………………....…100

8.3 Conclusions of Chapter 5….……………………………………………....…100

8.4 Conclusions of Chapter 6….……………………………………………....…101

8.5 Conclusions of Chapter 4….……………………………………………....…102

9. Reference……………………………………………………………………. 104

參考文獻 Adams, J. A. S. and C. E. Weaver, 1958. Thorium-to-uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies, Bulletin of the American Association of Petroleum Geologists, 42(2), 387-430.

Al-Wardy, W. and R. W. Zimmerman, 2004. Effective stress law for the permeability of clay-rich sandstones, Journal of Geophysical Research, 109, B04203.

Amaefule, J. O., M. Altunbay, D. Tiab, D. G. Kersey, D. K. Keelan, 1993. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Huston, Texas, U.S.A, 3rd-6th October 1993.

Anderson, E. M., 1951. The dynamics of faulting and dyke formation, Oliver and Boyd, Edingburgh, 206p.

Anell, I., H. Thybo and I. M. Artemieva, 2009. Cenozoic uplift and subsidence in the North Atlantic region: geological evidence revisited, Tectonophysics, 474, 78-105.

Anzalone, A., J. Boles, G. Greene, K. Young, J. Israelachvili and N. Alcantar, 2006. Confined fluids and their role in pressure solution, Chemical Geology, 230, 220-231.

Athy, L. F., 1930. Density, porosity, and compaction of sedimentary rocks, Bulletin of the American Association of Petroleum Geologists, 14(1), 1-24.

Audet, D. M. and A. C. Fowler, 1992. A mathematical model for compaction in sedimentary basins, Geophysical Journal International, 110, 577-590.

Baldwin, B. and C. O. Butler, 1985. Compaction curves, The American Association of Petroleum Geologists Bulletin, 69(4), 622-626.

Barton, C. M., 1977. Geotechnical analysis of rock structure and fabric in C.S.A. Mine, Cobar, New South Wales, Commonwealth Science and Industrial Research Organization, Australia.

Batzle, M. L., G. Simmons and R. W. Siegfried, 1980. Microcrack closure in rocks under stress: direct observation, Journal of Geophysical Research, 85(B12), 7072-7090.

Benson, S. M. and D. R. Cole, 2008. CO2 sequestration in deep sedimentary formations, Elements, 4, 325-331.

Bernabé, Y., U. Mok and B. Evans, 2003. Permeability-porosity relationships in rocks subjected to various evolution processes, Pure and Applied Geophysics, 160, 937-960.

Berryman, J. G., 1992. Effective stress for transport properties of inhomogeneous porous rock, Journal of Geophysical Research, 97, 17409-17424.

Bethke, C. M. and T. F. Corbet, 1988. Linear and nonlinear solutions for one-dimensional compaction flow in sedimentary basin, Water Resource Research, 24(3), 461-467.

Birgersson, L. and I. Neretnieks, 1990. Diffusion in the matrix of granitic rock: field test in the Stripa mine, Water Resources Research, 26(11), 2833-2842.

Bjørlykke, K. and K. Høeg, 1997. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins, Marine and Petroleum Geology, 14(3), 267-276.

Bjørlykke, K., J. Jahren, P. Aagaard and Q. Fisher, 2010. Role of effective permeability distribution in estimating overpressure using basin modeling, Marine and Petroleum Geology, 27, 1684-1691.

Brace, W. F., 1980. Permeability of crystalline and argillaceous rocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics abstracts, 17, 241-251.

Brace, W. F., J. B. Walsh and W. T. Frangos, 1968. Permeability of granite under high pressure, Journal of Geophysical Research, 73(6), 2225-2236.

Bulat, J. and S. J. Stoker, 1987. Uplift determination from interval velocity studies, UK, southern North Sea, J. Brooks and K. Glennie (Eds.), Petroleum Geology of North West Europe, Graham and Trotman, London, 293-305.

Cappa, C. and J. Rutqvist, 2011. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control, 5(2), 336-346.

Carman, P. C., 1938. The determination of the specific surface of powders, Transactions, Journal of the Society of Chemical Industries, 57, 225-234.

Carman, P. C., 1956. Flow of gases through porous media, Butterworths Scientific Publications, London, 182p.

Carrier III, W. D., 2003. Goodbye, Hazen; hello Kozeny-Carman, Journal of Geotechnical and Geoenvironmental Engineering, 129, 1054-1056.

Casagrande, A., 1936. The determination of the pre-consolidation load and its practical significance, A. Casagrande, (Ed.), Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Harvard University Press, Cambridge, 60-64.

Chen T.-M. N., W. Zhu, T.-F. Wong and S.-R. Song, 2009. Laboratory characterization of permeability and its anisotropy of Chelungpu fault rocks, Pure and Applied Geophysics, 166(5-7), 1011-1036.

Chen, W.-S., Y.-G. Chen, R.-C. Shih, T.-K. Liu, N.-W. Huang, C.-C. Lin, S.-H. Sung and K.-J. Lee, 2003. Thrust-related river terrace development in relation to the 1999 Chi-Chi earthquake rupture, Western Foothills, central Taiwan, Journal of Asian Earth Science, 21, 473-480.

Chen, W.-S., K. D. Ridgeway, C.-S. Horng, Y.-G. Chen, K.-S. Shea and M. G. Yeh, 2001a. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan, Geological Society of America Bulletin, 113(10), 1249-1271.

Chen, Y.-G., W.-S. Chen, J.-C. Lee, Y.-H. Lee, C.-T. Lee, H.-C. Chang and C.-H. Lo, 2001b. Surface rupture of the 1999 Chi-Chi earthquake yields insights on active tectonics of Central Taiwan, Bulletin of the Seismological Society of America, 91(5), 977-985.

Cheng, Y.-C., 2006. Inherent and stress-dependent anisotropy of permeability for jointed rock masses, thesis, National Central University, Taiwan (in Chinese).

Chinese Petroleum Corporation, 1982. Geologic Map of Western Taiwan, Taichung Sheet (1:100000), Exploration and Production Business Division, Chinese Petroleum Corporation, Miaoli, Taiwan.

Chiu, W.-Y., 2009: Oligocene to Pleistocene basin development and sequence stratigraphy in northwest Taiwan, Thesis, National Central University, Taiwan. (in Chinese).

Chou, J.-T., 1977. Sedimentology and paleogeography of the Pleistocene Toukoshan Formation in western Taiwan, Petroleum Geology of Taiwan, 14, 25-36.

Clauser, C., 1992. Permeability of crystalline rocks, Eos, Transactions American Geophysical Union, 73(21), 233-240.

Cripps, A. C. and D. M. McCann, 2000. The use of the natural gamma log in engineering geological investigations, Engineering Geology, 55, 313-324.

David, C., T.-F. Wong, W. Zhu and J. Zhang, 1994. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, 143, 425-456.

Debschutz, W., U. Kruckel and J. R. Schopper, 1989. Effect of geostatic stress and pore pressure on the Klinkenberg permeability factor and other fluid flow parameter, V. Maury & D. Foumaintraux (Eds.), Rock mechanics and rock physics at great depth, Balkema, Rotterdam, 179-186.

Dewers, T. and A. Hajash, 1995. Rate laws fro water-assisted compaction and stress-induced water-rock interaction in sandstones, Journal of Geophysical Research, 100(B7), 13093-13112.

Dewhurst, D. N., A. C. Aplin, J.-P. Sarda and Y. Yang, 1998. Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study, Journal of Geophysical Research, 103(B1), 651-661.

Dickinson, G., 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast, Louisana, The American Association of Petroleum Geologists Bulletin, 37(2), 410-432.

Domenico, P. A. and M. D. Mifflin, 1965. Water from low permeability sediments and land subsidence, Water Resource Research, 1(4), 563-576.

Dong, J.-J., J.-Y. Hsu, W.-J. Wu, T. Shimamoto, J.-H. Hung, E.-C. Yeh, Y.-H. Wu and H. Sone, 2010. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, 47, 1141-1157.

Doughty, C., B. M. Freifeld and R. C. Trautz, 2008. Site characterization for CO2 geological storage and vice versa: the Frio brine pilot, Texas, USA as a case study, Environmental Geology, 54, 1635-1656.

England, P. C. and P. Molnar, 1990. Surface uplift, uplift of rocks, and exhumation of rocks, Geology, 18, 1173-1177.

Evans, J. P., C. B. Forster and J. V. Goddard, 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault, Journal of Structural Geology, 19(11), 1393-1404.

Faulkner, D. R., T. M. Mitchell, D. Healy and M. J. Heap, 2006. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone, Nature, 444, 922-925.

Faulkner, D. R. and E. H. Rutter, 2000. Comparison of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20˚C, Journal of Geophysical Research, 105, 16415-16426.

Fisher, Q. J., M. Casey, M. B. Clennell and R. J. Knipe, 1999. Mechanical compaction of deeply buried sandstones of the North Sea, Marine and Petroleum Geology, 16, 605-618.

Fowler, A. C. and X. S. Yang, 1998. Fast and slow compaction in sedimentary basins, SIAM Journal on Applied Mathematics, 59(1), 365-385.

Gardner, G. H. F., L. W. Gardner and A. R. Gregory, 1974. Formation velocity and density – the diagnostic basics for stratigraphic traps, Geophysics, 39(6), 770-780.

Ghabezloo, S., J. Sulem, S. Guedon and F. Martineau, 2009. Effective stress law for the permeability of a limestone, International Journal of Rock Mechanics & Mining Sciences, 46, 297-306.

Giles, M. R., 1997. Diagenesis: a Quantitative Perspective - Implications for Basin Modeling and Rock Property Prediction, Kluwer Academic Publishers, Dordrecht, 526p.

Gomez, C. T., J. Dvorkin and T. Vanorio, 2010. Laboratory measurements of porosity, permeability, resistivity, and velocity on Fontainebleau sandstones, Geophysics, 75(6), E191-E204.

Grevemeyer, I. and H. Villinger, 2001. Gas hydrate stability and the assessment of heat flow through continental margins, Geophysical Journal International, 145, 647-660.

Haimson, B., W. Lin, H. Oku, J.-H. Hung and S.-R. Song, 2010. Integrating borehole-breakout dimensions, strength criteria, and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan, Tectonophysics, 482(1-4), 65-72.

Handin, J. and R. V. Hager, Jr., 1958. Experimental deformation of sedimentary rocks under confining pressure: tests at high temperature, Bulletin of the American Association of Petroleum Geologists, 42(12), 2892-2934.

Hazen, A., 1892. Some physical properties of sand and gravels, with special reference to their use in filtration, 24th Annual Report publish document No. 34, Massachusetts State Board of Health, Boston, U.S.A., 539-556.

Hazen, A., 1911. Discussion of ‘dams on sand foundations’ by A. C. Hoenig, Transactions of the American Society of Civil Engineers, 73, 199-203.

Hedberg, H. D., 1936. Gravitational compaction of clays and shales, American Journal of Science, 31, 241-287.

Heermance, R. V. and J. P. Evans, 2006. Geometric evolution of the Chelungpu fault, Taiwan: the mechanics of shallow frontal ramps and fault imbrication, Journal of Structural Geology, 28, 929-938.

Ho, C.-S., 1988. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan, Ministry of Economics Affairs, Taipei.

Hoholick, J. D., T. Metarko and P. E. Potter, 1984. Regional variations of porosity and cement: St. Peter and Mount Simon sandstones in Illinois Basin, The American Association of Petroleum Geologists Bulletin, 68(6), 753-764.

Holloway, S. and R. van der Straaten, 1995. The Joule II project: the underground disposal of carbon dioxide, Energy Conversion and Management, 36, 519-522.

Holtz, R. D. and W. D. Kovacs, 1981. An Introduction to Geotechnical Engineering, Prentice Hall, New Jersey, 733p.

Houseknecht, D. W., 1987. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstone, The American Association of Petroleum Geologists Bulletin, 71(6), 633-642.

Hsieh, S.-H. And C-C. Hu, 1972. Gravity and magnetic studies of Taiwan, Petroleum Geology of Taiwan, 10, 283-321.

Hubbert, M. K. and W. W. Rubey, 1959. Role of fluid pressure in the mechanics of overthrust faulting: part I, Geological Society of America Bulletin, 70, 115-166.

Hung, J.-H., K.-F. Ma, C.-Y. Wang, H. Ito, W. Lin and E.-C. Yeh, 2009. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project, Tectonophysics, 446, 307-321.

Issler, D. R., 1992. A new approach to shale compaction and stratigraphic restoration, Beaufort-Mackenzie basin and Mackenzie corridor, northern Canada, The American Association of Petroleum Geologists Bulletin, 76(8), 1170-1189.

Jamiolkowski, M., C. C. Ladd, J. T. Germaine and R. Lancellotta, 1985. New developments in field and laboratory testing of soils, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, A. A. Balkema, Boston, 57-153.

Japsen, P., 1993. Influence of lithology and Neogene uplift on seismic velocities in Denmark: implications for depth conversion of maps, The American Association of Petroleum Geologists Bulletin, 77(2), 194-211.

Japsen, P., 1998. Regional velocity-depth anomalies, North Sea chalk: a record of overpressure and Neogene uplift and erosion, American Association of Petroleum Geologists Bulletin, 82(11), 2031-2074.

Japsen, P. and J. A. Chalmers, 2000. Neogene uplift and tectonics around the North Atlantic: overview, Global and Planetary Change, 24, 165-173.

Jones, M. E. and M. A. Addis, 1984. Volume change during sediment diagenesis and the development of growth faults, Marine and Petroleum Geology, 1, 118-122.

Jones, M. E. and M. A. Addis, 1985. On changes in porosity and volume during burial of argillaceous sediments, Marine and Petroleum Geology, 2, 247-253.

Jose, B. T., A. Sridharan and B. M. Abraham, 1989. Log-log method for determination of pre-consolidation pressure, Geotechnical Testing Journal, 12(3), 230-237.

Kanatani, K., 1984. Distribution of directional data and fabric tensors, International Journal of Engineering Science, 22(2), 149-164.

Kao, H. and W.-P Chen, 2000. The Chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349.

Kaviany, M., 1995. Principles of Heat Transfer in Porous Media, F. F. Ling (Ed.), Mechanical Engineering Series, Spring, New York.

Klinkenberg, L. J., 1941. The permeability of porous media to liquids and gases, Drilling and Production Practice, American Petroleum Institute, New York, 200-213.

Kozeny, J., 1927. Ueber kapillare leitung des wassers im boden, Sitzungberichte Akademie der Wissenschaften Wien, 135(2a), 271-306.

Kuo, L.-W., S. R. Song, L. Huang, E.-C. Yeh and H.-F. Chen, 2011. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan, Tectonophysics, 502, 315-327.

Kuo, L.-W., S.-R. Song, E.-C. Yeh, H.-F. Chen and J. Si, 2012. Clay mineralogy and geometry investigations in the host rocks of the Chelungpu fault, Taiwan: implication for faulting mechanism, Journal of Asian Earth Sciences, 59, 208-218.

Kwon, O., A. K. Kronenberg, A. F. Gangi, B. Johnson and B. E. Herbert, 2004. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading, Journal of Geophysical Research, 109, B10205.

Lai, K.-Y., Y.-G. Chen, J.-H. Hung, J. Suppe, L.-F. Yue and Y.-W. Chen, 2006. Surface deformation related to kink-folding above an active fault: evidence from geomorphic features and co-seismic slips, Quaternary International, 147, 44-54.

Lander, R. H. and O. Walderhaug, 1999. Predicting porosity through simulating sandstone compaction and quartz cementation, The American Association of Petroleum Geologists Bulletin, 83(3), 433-449.

Leder, F. and W. C. Park, 1986. Porosity reduction in sandstone by quartz overgrowth, The American Association of Petroleum Geologists Bulletin, 70(11), 1713-1728.

Lee, J.-C., Y.-G. Chen, K. Sieh, K. Mueller, W.-S. Chen, H.-T. Chu, Y.-C. Chan, C. Rubin and R. Yates, 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: structural and paleoseismic implications for an active trust fault, Bulletin of the Seismological Society of America, 91, 914-929.

Lin, A. T., S.-M. Wang, J.-H. Hung, M.-S. Wu and C.-S. Liu, 2007a. Lithostratigraphy of the Taiwan Chelungpu-fault Drilling Project - a borehole and its neighboring region, central Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 223-241.

Lin, A. T. and A. B. Watts, 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research, 107(B9), 2185.

Lin, A. T., A. B. Watts and S. P. Hesselbo, 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, 15, 453-478.

Lin, W., E.-C. Yeh, J.-H. Hung, B. Haimson and T. Hirono, 2010. Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu–fault Drilling Project (TCDP), Tectonophysics, 482, 82-91.

Lin, W., E.-C. Yeh, H. Ito, T. Hirono, W. Soh, C.-Y. Wang, K.-F. Ma, J.-H. Hung and S.-R. Song, 2007b. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to 3D in-situ stress determination, Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 379-393.

Lucia, F. J., 1995. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, The American Association of Petroleum Geologists Bulletin, 79(9), 1375-1300.

Luo, X. and G. Vasseur, 1992. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions, The American Association of Petroleum Geologists Bulletin, 76(10), 1550-1559.

Magara, K., 1976. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada basin, The American Association of Petroleum Geologists Bulletin, 60(4), 554-565.

Magara, K., 1980. Comparison of porosity-depth relationships of shale and sandstone, Journal of Petroleum Geology, 3, 175-185.

McKee, C. R., A. C. Bumb and R. A. Koenig, 1988. Stress-dependent permeability and porosity of coal and other geologic formations, SPE Formation Evaluation, 3(1), 81-91.

McKenzie, D., 1978. Some remarks on the development of sedimentary basins, Earth and Planetary Science Letters, 40(1), 25-32.

Mello, U. T. And G. D. Karner, 1996. Development of sediment overpressure and its effect on thermal maturation: application to the Gulf of Mexico Basin, The American Association of Petroleum Geologists Bulletin, 80(9), 1367-1396.

Michon, L., R. T. Van Balen, O. Merle and H. Pagnier, 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale, Tectonophysics, 367, 101-126.

Mondol, N. H., K. Bjørlykke, J. Jahren and K. Høeg, 2007. Experimental mechanical compaction of clay mineral aggregates – changes in physical properties of mudstones during burial, Marine and Petroleum Geology, 24, 289-311.

Monroy, R., L. Zdravkovic and A. Ridley, 2010. Evolution of microstructure in compacted London Clay during wetting and loading, Géotechnique, 60(2), 105-119.

Moos, D. and M. D. Zoback, 1983. In situ studies of velocity in fractured crystalline rocks, Journal of Geophysical Research, 88(B3), 2345-2358.

Morrow, C. A., L. Shi and J. D. Byerlee, 1984. Permeability of fault gouge under confining pressure and shear stress, Journal of Geophysical Research, 89(B5), 3193-3200.

Mouthereau, F., O. Lacombe, B. Deffontaines, J. Angelier, H.-T. Chu and C.-T. Lee, 1999. Quaternary transfer faulting and belt front deformation at Pakuashan (western Taiwan), Tectonics, 18, 215-230.

Nelson, P. H., 1994. Permeability-porosity relationships in sedimentary rocks, The Log Analyst, 35(3), 38-62.

Nur, A. and J. Walder, 1990. Time-dependent hydraulics of the Earth’s crust, The Role of Fluids in Crustal Processes, National Academy Press, Washington, D.C., 113-127.

Oda, M., 1986. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses, Water Resource Research, 22(13), 1845-1856.

Oda, M., 1993. Modern developments in rock structure characterization, J. A. Hudson (Ed.), CompressiveRock Engineering Vol.1, Elsevier, New York, 185-200.

Pape, H., C. Clauser and J. Iffland, 1999. Permeability prediction based on fractal pore-space geometry, Geophysics, 64(5), 1447-1460.

Pape, H., C. Clauser and J. Iffland, 2000. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model, Pure and Applied Geophysics, 157, 603-619.

Petunin, V. V., C. Labra, F. Xiao, A. N. Tutuncu, J. Sun and X. Yin, 2013. Porosity and permeability change under stress correlation to rock texture, C. Hellmich, B. Pchler, D. Adam (Eds.), Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, American Society of Civil Engineers, Vienna, Austria, 1037-1046.

Pliler, R. and J. A. S. Adams, 1962. The distribution of thorium, uranium, and potassium in the Mancos shale, Geochimica et Cosmochimica Acta, 26, 1115-1135.

Ramm, M., 1992. Porosity-depth trends in reservoir sandstones: theoretical models related to Jurassic sandstones offshore Norway, Marine and Petroleum Geology, 9, 553-567.

Renner, J., T. Hettkamp and F. Rummel, 2000. Rock mechanical characterization of an argillaceous host rock of a potential radioactive waste repository, Rock Mechanics and Rock Engineering, 33(3), 153-178.

Rieke III, H. H. and G. V. Chilingarian, 1974. Compaction of argillaceous sediments, Elsevier, New York, 438 p.

Riis, F. and W. Fjeldskaar, 1992. On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea, R. M. Larsen, H. Berkke, B. T. Larsen and E. Talleraas (Eds.), Structural and Tectonic Modelling and its Application to Petroleum Geology, Elsevier, New York, 163-185

Rutqvist, J., Y.-S. Wu, C.-F. Tsang and G. Bodvarsson, 2002. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, 39(4), 429-442.

Scheidegger, A. E., 1974. The physics of flow through porous media, 3rd ed., University of Toronto Press, Toronto, Canada.

Scherer, M., 1987. Parameters influence porosity in sandstones: a model for sandstone porosity prediction, The American Association of Petroleum Geologists Bulletin, 71(5), 485-491.

Schlumberger, 1989. Log Interpretation Principles/Applications, Schlumberger Educational Services, Houston, TX.

Schmertmann, J. H., 1955. The undisturbed consolidation behavior of clay, Transactions of the American Society of Civil Engineers, 120, 1201-1233.

Schmoker, J. W. and R. B. Halley, 1982. Carbonate porosity versus depth: a predictable relation for south Florida, The American Association of Petroleum Geologists Bulletin, 66, 2561-2570.

Schneider, F., J. L. Potdevin, S. Wolf and I. Faille, 1996. Mechanical and chemical compaction model for sedimentary basin simulators, Tectonophysics, 263, 307-317.

Sclater, J. G. and P. A. F. Christie, 1980. Continental stretching: an explanation of post-midcretaceous subsidence of the central North Sea basin, Journal of Geophysical Research, 85(B7), 3711-3739.

Scott, Jr., T. E., M. M. Zaman and J. C. Roegiers, 1998. Acoustic–velocity signatures associated with rock-deformation processes, Journal of Petroleum Technology, 50(6), 70-74.

Sharp, J. M. and P. A. Domenico, 1976. Energy transport in thick sequences of compaction sediment, Geological Society of American Bulletin, 87(3), 390-400.

Shi, Y. and C.-Y. Wang, 1986. Pore pressure generation in sedimentary basins: overloading versus aquathermal, Journal of Geophysical Research, 91(B2), 2153-2162.

Shi, T. and C.-Y. Wang, 1988. Generation of high pore pressure in accretionary prisms: interfaces from the Barbados Subduction Complex, Journal of Geophysical Research, 93(B8), 8893-8910.

Skempton, A. W., 1969. The consolidation of clays by gravitational compaction, Quarterly Journal of the Geological Society, 125, 373-411.

Song, S.-R., L.-W. Kuo, E.-C. Yeh, C.-Y. Wang, J.-H. Hung and K.-F. Ma, 2007. Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP hole-A, Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 243-269.

Steckler, M. S. and A. B. Watts, 1978. Subsidence of the Atlantic-type continental margin off New York, Earth Planetary Science Letters, 41, 1-13.

Suetnova, E. and G. Vasseur, 2000. 1-D modelling rock compaction in sedimentary basins using a visco-elastic rheology, Earthe and Planetary Science Letters, 178(3-4), 373-383.

Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Memoir of the Geological Society of China, 4, 67-89.

Suppe, J. and J. H. Wittke, 1977. Abnormal pore-fluid pressures in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan, Petroleum Geology of Taiwan, 14, 11-24.

Tanikawa, W. and T. Shimamoto, 2009. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks, International Journal of Rock Mechanics & Mining Sciences, 46, 229-238.

Tanikawa, W., T. Shimamoto, S.-K. Wey, C.-W. Lin and W.-C. Lai, 2008. Stratigraphic variation of transport properties and overpressure development in the Western Foothills, Taiwan, Journal of Geophysical Research, 113, B12403.

Terzaghi, K., 1942. Theoretical Soil Mechanics, John Wiley & Sons, Inc., New York, 510p.

Tuncay, E. and R. Ulusay, 2008. Relation between Kaiser effect levels and pre-stresses applied in the laboratory, International Journal of Rock Mechanics & Mining Sciences, 45, 524-537.

Tittman, J. and J. S. Wahl, 1965. The physical foundations of formation density logging (gamma-gamma), Geophysics, 30(2), 284-294.

Uehara, S.-i., T. Shimamoto, K. Okazaki, H. Funaki, H. Kurikami, T. Niizato and Y. Ohnishi, 2012. Can surface samples be used to infer underground permeability structure? a test case for a Neogene sedimentary basin in Horonobe, Japan, International Journal of Rock Mechanics & Mining Sciences, 56, 1-14.

Walder, J. and A. Nur, 1984. Porosity reduction and crustal pore pressure development, Journal of Geophysical Research, 89(B13), 11539-11548.

Walderhaug, O., 1996. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs, The American Association of Petroleum Geologists Bulletin, 80(5), 731-745.

Walsh, J. B., 1965. The effect of cracks on the compressibility of rocks, Journal of Geophysical Research, 70, 381-389.

Walsh, J. B. and W. F. Brace, 1984. The effect of pressure on porosity and the transport properties of rock, Journal of Geophysical research, 89(B11), 9425-9431.

Wang, C.-Y., H. Tanaka, J. Chow, C.-C. Chen and J.-H. Hung, 2002. Shallow reflection seismics aiding geological drilling into the Chelungpu fault after the 1999 Chi-Chi earthquake, Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 13(2), 153-170.

Watts, A. B. and W. B. F. Ryan, 1976. Flexure of the lithosphere and continental margin basins, Tectonophysics, 36, 25-44.

Wells, P. E., 1990. Porosities and seismic velocities of mudstones from Wairarapa and oil wells of North Island, New Zealand, and their use in determining burial history, New Zealand Journal of Geology and Geophysics, 33, 29-39.

Wibberley, C., 2002. Hydraulic diffusivity of fault gouge zones and implication for thermal pressurization during seismic slip, Earth Planets Space, 54, 1153-1171.

Wu, W.-J. and J.-J. Dong, 2012. Determining the maximum overburden along thrust faults using a porosity versus effective confining pressure curve, Tectonophysics, 578, 63-75.

Wu, Y.-H., E.-C. Yeh, J.-J. Dong, L.-W. Kuo, J.-Y. Hsu and J.-H. Hung, 2008. Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project, Geophysical Journal International, 174(3), 949-965.

Wyllie, M. R. J., A. R. Gregory and L. W. Gardner, 1956. Elastic wave velocities in heterogeneous and porous media, Geophysics, 21(1), 41-70.

Yabe, Y., S.-R. Song and C.-Y. Wang, 2008. In-situ stress at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP, Earth Planets Space, 60, 809-819.

Yamamoto, K., Y. Kuwahara, N. Kato and T. Hirasawa, 1990. Deformation rate analysis: a new method for in situ stress estimation from inelastic deformation of rock samples under uniaxial compressions, Tohoku Geophysical Journal, 33, 127-147.

Yang, K.-M., S.-T. Huang, H.-H. Ting, J.-C. Wu, W.-R. Chi, W.-W. Mei, H.-H. Hsu and T.-H. Hsiuan, 2003. Study of fault structures in foothills belt and deformation front, Taiwan, Exploration and Production Research Bulletin, 25, 45-71 (in Chinese).

Yang, Y. and A. C. Aplin, 2007. Permeability and petrophysical properties of 30 natural mudstones, Journal of Geophysical research, 112, B03206.

Yeh, E.-C., H. Sone, T. Nakaya, K.-H. Lan, S.-R. Song, J.-H. Hung, W. Lin, T. Hirono, C.-Y. Wang, K.-F. Ma, W. Soh and M. Kinoshita, 2007. Core description and characteristics of fault zone from hole-A of the Taiwan Chelungpu-Fault Drilling Project, Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 327–357.

Yen, P.-C., 2012. Estimate the in-situ stress from subsurface geological data from Hsinchu to Taichung area, western Taiwan, thesis, National Central University, Taiwan.

Yue, L.-F. and J. Suppe, 2014. Regional pore-fluid pressures in the active western Taiwan thrust belt: a test of the classic Hubbert-Rubey fault-weakening hypothesis, Journal of Structural Geology, 69(B), 493-518.

Yue, L.-F., J. Suppe and J. H. Hung, 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6), Journal of Structural Geology, 27, 2058-2083.

指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明