博碩士論文 986406003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.215.62.41
姓名 鄭皓元(Hao-Yuan Cheng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱
(Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 應用遙測方式獲取高時間與空間分辨率之海洋環境資訊為環境監測與防災之新趨勢,雷達遙測為非接觸式監測,雷達訊號強度會受外在環境影響而衰減,例如降雨與高濕度環境之影響,本研究第一部分即在討論降雨對現在廣為應用之X與S頻航海雷達之影響,並討論此類航海雷達於海洋環境監測能力之優劣.內文第二部分為改善現行廣為使用之影像雷達,使其具有同調性雷達之訊號,以增加其對海洋環境流場與坡場監測之應用性.
本研究第一部分研製 S-band 雷達進行波浪量測,不同於以往採用的 X-band 觀測系統,S-band 雷達不受降雨的影響,可進行全天候不間斷觀測。為了解 S-band 雷達觀測波浪的能力與限制,本研究在東北與西南季風期間於中央大學臨海工作站新屋海域佈放離岸不同距離位置之底碇式都卜勒流速波浪量測儀(Acoustic Doppler Current Profiler, upgrade to wave mode),並在岸上架設 X-band 與 S-band 雷達測波系統,進行兩次為期 18 與 25 天的同步聯合觀測實驗,實驗期間包含降雨與高相對濕度天候,觀測時間間距為每 20 分鐘一次。觀測比對結果顯示 S-band 雷達可有效於降雨期間進行海面波浪觀測,其回波訊躁比 SNR 與波高之對數比對,成線性正相關,其迴歸曲線隨觀測位置依雷達入射角度而有一截距偏移。由 MTF 曲線顯示 S-band 雷達觀測結果能量較偏低頻,這與使用的天線長度與S-band 雷達電磁波特性造成之觀測 Footprint 大小有關。
本研究第二部分採用商用航海微波雷達主機與天線等硬體配置為基礎,設計中頻訊號處理電路,開發出一套移動式岸基同調微波雷達海象觀測系統,實現海面波浪與流場等的觀測。與非同調性微波雷達不同,本研究所開發之雷達系統,採用單頻式脈衝發射電磁波,通過獲取發射訊號與海面回波訊號之間的相位差,來估算海表徑向流速,再採用流函數模型反演得到觀測海域之矢量流場。為驗證雷達觀測結果之準確性,本研究設計了一套極小化可拋棄式漂流浮球陣列系統:球體體積小、重量輕,避免了對海表流場的干擾;成本低廉、大量佈放,可對測區內空間多點進行同步連續觀測。
摘要(英) The content of this thesis is divided into two parts. The first part is the development of S-band radar and the second part is the development of coherent-on-receive radar.

The first part: The high spatial resolutions of sea-clutter image sequences from X-band radar offer a means of deriving individual waves and wave field at low-cost. However, the performance of X-band radar is impaired under rainy conditions, which are usually accompanied by the severe weather at sea. In the present study, we examine the effectiveness of S-band radar for wave measurements under precipitation. The results of comprehensive comparative studies with sea-truth data show that S-band radar is capable of carrying out wave measurements in rainy conditions. Although the longer wavelength of the S-band leads to a coarser resolution of radar imagery, the S-band radar features at least the equivalent performance of the X-band system in non-rainy conditions, in terms of wave height measurement. The results suggest that the S-band and X-band could be complementary systems. In rainy conditions the S-band is more efficient but in the non-rainy periods the X-band gives more confident results. The relationship of significant wave height with radar signal-to-noise ratio (SNR), and the modulation transfer function (MTF) between radar spectrum and wave spectrum for the used X-band and S-band radars are established and discussed in this paper.

The second part: In present study, an X-band marine radar was installed at the northwestern coast of Taiwan. The IF signal from the super-heterodyne receiver of the marine radar was retrieved, amplified, band-pass filtered and digitized to be the raw dataset, from which the phase of transmitted and echo radar EM wave could be determined. Based on Doppler theory, the time rate change of the phases between succeeding pulses could be used for estimating the water particle velocity of wave orbital motion. Due to the fact that the magnetron in the marine radar produces random frequency jump, and leading to mis-estimate of the phase differences. We adopted the Ensemble Empirical Mode Decomposition method as a filter to exclude the effects of frequency jump.
關鍵字(中) ★ S頻測波流雷達
★ 同調性雷達
關鍵字(英) ★ S-band marine radar
★ Coherent-on-receive radar
論文目次
中文摘要 I
Abstract II
List of Figures IV
List of Tables VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Goal and objective 6
Chapter 2 Implementation of S-band marine radar for surface wave measurement under precipitation 7
2.1 Field experiment setup 7
2.2 Analysis method 14
2.3 Calibration of the intensity of radar backscatter 18
2.4 Results and discussions 22
2.5 Conclusions 34
Chapter 3 Developments of Coherent-on-Receive Microwave Marine Radar for Wave and Current Measurement 36
3.1 Field experiment setup 36
3.2 Analysis method 38
3.3 Data processing and results 41
3.4 Summary 46
Chapter 4 Developments of miniature drifters for sea surface wave and current validations of Coherent-on-Receive Microwave Marine Radar 47
4.1 The design of miniature wave buoy 47
4.2 The design of miniature sea surface drifter 57
Reference 61
參考文獻
Alamsyah, N., 2008. Identification of Geomorphological Dynamics for Bathymetric Time Series Acquired by Radar. GmbH, Technical Report of GKSS- ForschungszentrumGeesthacht .
Alpers, W., Hasselmann, K., 1982. Spectral signal to clutter and thermal noise properties of ocean wave imaging synthetic aperture radar. Int. J. Remote Sens. 3 (4), 423–466.
Alpers, W., Ross, D.B., Rufenach, C.L., 1981. On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res. 86 (C7), 6481–6498.
Bell, P.S., 1999. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng. 37, 513–527.
Chang, W.-Y., Chen Wang, T.-C., Lin, P.-L., 2009. Characteristics of the raindrop size distri- bution and drop shape relation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Ocean. Technol. 26, 1973–1993.
Cui, L., He, Y., Shen, H., Lu, H., 2010. Measurements of ocean wave and current field using dual polarized X-band radar. Chin. J. Oceanol. Limnol. 28 (5), 1021–1028.
Dankert, H., Rosenthal, W., 2004. Ocean surface determination from X-band radar image sequences. J. Geophys. Res. 109:C4. http://dx.doi.org/10.1029/2003JC002130.
Dankert, H., Horstmann, J., Rosenthal, W., 2003. Ocean wind fields retrieved from radar- image sequences. J. Geophys. Res. 108:C11. http://dx.doi.org/10.1029/2003JC002056.
Dankert, H., Horstmann, J., Rosenthal, W., 2005. Wind- and wave-field measurements using marine X-band radar-image sequences. IEEE J. Ocean. Eng. 30, 534–542.
Gangeskar, R., 2014. An algorithm for estimation of wave height from shadowing in X- band radar sea surface images. IEEE Trans. Geosci. Remote Sens. 52 (6), 3373–3381.
Gommenginger, C.P., Ward, N.P., Fisher, G.J., Robinson, I.S., Boxall, S.R., 2000. Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images. J. Atmos. Ocean. Technol. 17, 665–678.
Gunn, K.L.S., East, T.W.R., 1954. The microwave properties of precipitation particles. Q. J. R. Meteorol. Soc. 80, 522–545.
Hawkins, H.E., Plant, O.L., 1959. Radar performance degradation in fog and rain. IRE Trans. Aeronaut. Navig. Electron. 26–30.
Izquierdo, P., Guedes-Soares, C., 2005. Analysis of sea waves and wind from X-band radar. Ocean Eng. 32, 1404–1419.
Izquierdo, P., Guedes-Soares, C., Borge, J.C.N., Rodriguez, G.R., 2004. A comparison of sea-state parameters from nautical radar images and buoy data. Ocean Eng. 31, 2209–2225.
Johnson, D., 2008. DIWASP, a directional wave spectra toolbox for MATLAB®: User Manual. Research Report WP-1601-DJ (V1.1). Centre for Water Research, University of Western Australia.
Liu, X., Huang, W., Gill, E.W., 2015. Shadowing-analysis-based wave height measurement from ship-borne X-band nautical radar images. OCEANS 2015-Genova, pp. 1–4.
Liu, X., Huang, W., Gill, E.W., 2016. Comparison of wave height measurement algorithms for ship-borne X-band nautical radar. Can. J. Remote. Sens. 42:4. http://dx.doi.org/10.1080/07038992.2016.1177450.
Lund, B., Collins, C.O., Graber, H.C., Terrill, E., Herbers, T.H.C., 2014. Marine radar ocean wave retrieval′s dependency on range and azimuth. Ocean Dyn. 64, 999–1018.
Maa, J.P.-Y., Ha, H.K., 2005. X-band radar wave observation system. Field Testing of a Physical/Biological Monitoring Methodology for Offshore Dredging and Mining Operations 56. US Department of the Interior, Minerals Management Service OCS Study MMS.
Nieto Borge, J.C., Soares, C.G., 2000. Analysis of directional wave fields using X-band navigation radar. Coast. Eng. 40 (4), 375–391.
Nieto Borge, J.C., Reichert, K., Dittmer, J., 1998. Use of nautical radar as a wave monitoring instrument. Coast. Eng. 37, 331–342.
Nieto Borge, J.C., Hessner, K., Reichert, K., 1999. Estimation of the Significant Wave Height with X-band Nautical Radars. Proceedings of the 18th OMAE Conference St John′s, Newfoundland, Canada.
Nieto Borge, J.C., Rodriguez, G., Hessner, K., Izquierdo Gonzalez, P., 2004. Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Technol. 21, 1291–1300.
Nieto Borge, J.C., Hessner, K., Jarabo-Amores, P., Dela Mata-Moya, D., 2008. Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series. IET Radar, Sonar and Navigation 2 (1), 35–41.
Robinson, I.S., Ward, N.P., Gommenginger, C.P., Tenorio-Gonzales, M.A., 2000. Coastal oceanography applications of digital image data from marine radar. J. Atmos. Ocean. Technol. 17 (5), 721–735.
Seemann, J., 1997. Interpretation of the Structure of the frequency-wave number spectrum of nautical radar temporal sequences of sea states (in German). University of Hamburg, Hamburg, Germany (Ph.D. thesis).
Stevens, C.L., Smith, M.J., Mcgregor, J.A., Saltzman, E.S., 2013. Estimation of whitecap coverage percentage using shallow grazing angle video and FMICW radar. In: Donelan, M.S., Drennanm, W.M., Wanninkhof, R. (Eds.), Gas Transfer at Water Surfaces. American Geophysical Union, Washington, D. C. http://dx.doi.org/10.1029/GM127p0213 .
Trizna, D.B., 1991. Statistics of low grazing angle radar sea scatter for moderate and fully developed ocean waves. IEEE Trans. Antennas Propag. 39 (12), 1681–1690.
Trizna, D.B., 2010. Coherent marine radar measurements of properties of ocean waves and currents, Geoscience and Remote Sensing Symposium (IGARSS) 2010. IEEE Inter- national 4737–4740 IEEE.
Trizna, D.B., Carlson, D.J., 1996. Studies of dual polarized low grazing angle radar sea scatter in nearshore regions. IEEE Transactions of Geoscience and Remote Sensing 34, 3747–3,757.
Valenzuela, G.R., 1978. Theories for the interactions of electromagnetic and ocean waves – a review. Bound.-Layer Meteorol. 13 (1–4), 61–85.
Vicen-Bueno, R., Lido-Muela, C., Nieto Borge, J.C., 2012. Estimate of significant wave height from non-coherent marine radar images by multilayer perceptrons. EURASIP Journal on Advances in Signal Processing 1, 1–20.
Wolf, J., Bell, P.S., 2001. Waves at Holderness from X-band radar. Coast. Eng. 43, 247–263.
Wyatt, L.R., Green, J.J., Gurgel, K.W., Nieto-Borge, J.C., Reichert, K., Bessner, K., Guenther, H., Rosenthal, W., Saelra, O., Reistad, M., 2003. Validation and intercomparisons of wave measurements and models during the EuroROSE experiments. Coast. Eng. 48, l–28.
Young, I.R., Rosenthal, W., Ziemer, F., 1985. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res. 90, 1049–1059.
Trizna, D.B., Carlson, D.J., 1996. Studies of dual polarized low grazing angle radar sea scatter in nearshore regions. IEEE Transactions of Geoscience and Remote Sensing 34, 3747–3,757.
N.E. Huang, et al., 1998, “The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proc. Roy. Soc. London, 454A, 903–995.
N.E. Huang and Z. Wu, 2008, “A review on Hilbert-Huang transform: method and its applications to geophysical studies”, Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.
D. Lyzenga, O. Nwogu and D. Trizna, 2009, ”Ocean wave field measurements using coherent and non-coherent radars at low grazing angles”, Geoscience and Remote Sensing Symposium (IGRASS 2009 Honolulu), 26-30.
D.B. Trizna, 2008, “A coherent marine radar for decameter-scale current mapping and direct measurements of directional ocean wave spectra”, Oceans, Biloxi, USA, 1-6.
D.B. Trizna, 2010, “Coherent marine radar measurements of properties of ocean waves and currents”, Geoscience and Remote Sensing Symposium (IGRASS 2010, Honululu), 4730-4740.
D.B. Trizna, 2010, “Comparisons of a fully coherent and coherent-on-receive marine radar for measurements of wave spectra and surface currents”, Oceans Seattle, 1-5
指導教授 錢樺 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明