博碩士論文 986410001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.210.158.163
姓名 許庭彰(Ting-Chang Hsu)  查詢紙本館藏   畢業系所 地球系統科學國際研究生博士學位學程
論文名稱 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用
(N2 and N2O production by various nitrogen removal processes in coastal and estuarine sediments: an improved stable isotope tracer method and its application)
相關論文
★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖★ 西北太平洋長期波候變遷之研究
★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ 水域中硝化作用與氧化亞氮的產生:亞熱帶深水水庫與長江口擴散舌研究案例★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement
★ 內陸棚及河口混合與擴散特性觀測研究★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮移除過程將活性氮物種轉化成最終產物氮氣(N2)或是氧化亞氮(N2O)並且從生態系統中移除。然而全球氣候變遷對N2O(溫室效應當量為二氧化碳的300倍)或N2卻是有著全然不同的回饋過程。另外,人類製造出的大量活性氮已經嚴重干擾並且加速氮循環過程,導致水域系統的優養化和一系列的環境問題。目前對氮移除過程的瞭解相當廣泛,但是針對移除速率的定量和調控機制的研究卻相對缺乏。最近基因組學的研究也揭露數個先前未知的,新的氮移除過程。針對各種氮移除過程的移除速率和相對貢獻,甚至包含未知過程的探索,提出創新的方法技術因而顯的相當急迫且重要。本論文提出一個新發展出來的穩定同位素15N示蹤方法(IPTanaN2O)可用來定量和區分複雜的氮移除過程,包括脫硝作用、硝化作用、厭氧氨氧化作用、硝化菌脫硝作用以及協同脫硝作用。新的方法也運用在富營養鹽的溼地和沿岸生態系統中。在淡水河溼地和長江口缺氧區這兩個研究中,IPTanaN2O方法被用來同步定量每個氮移除作用的N2和N2O產生速率。在淡水河溼地的案例中,脫硝作用產生的N2O是主要的氮移除過程,而且可能貢獻了大多數的水體往大氣釋放的N2O。然而,在長江口外的沉積物研究中,區分不開的硝化菌脫硝作用和協同脫硝作用佔了超過一半的N2O產率,而且脫硝作用產生的N2是主要的氮移除過程。相較於低氧水體中經由脫硝作用或是消化作用產生的N2O而言,沉積物產生的N2O實際是水體中溶解性N2O的主要來源。據我們所知,這是第一個使用15N示蹤劑方法在海洋沉積物中,證實區分不開的硝化菌脫硝作用和協同脫硝作用的存在,同時也說明了IPTanaN2O的潛力。在全球變遷的研究脈絡下,我們認為使用這個新方法定量不同的轉換以及個別作用的速率,應該進一步運用在對溫度、二氧化碳分壓、溶氧…等更精細的操控實驗中。本論文有四個主要貢獻:第一,我們提出新的工具IPTanaN2O,能夠用來定量數種氮移除過程的速率與相對貢獻量。這將有助於研究者未來針對個別過程的調控機制方面的研究。另外,我們同時也示範如何辨別出硝化菌脫硝作用和協同脫硝作用的存在,這兩種作用或許可以進一步以基因組學的方法區分開來。第三,長江口外側區域在缺氧區逐漸生成的期間,沉積物會出現N2O產率很高而且變動程度很大的情況。我們認為這種不穩定的狀態是由於沉積物中的氮移除過程,隨著水體溶氧逐漸降低而有所轉變所致。未來針對缺氧區氮循環的研究,應該將水體缺氧視為一個連續的發展過程,而非只是一個單點的事件,這樣才能建立一個在水體缺氧的不同時期,各種氮移除作用的回應的完整圖像。最後,長江口外水體缺氧前期,沉積物產生的N2O,證實為水體N2O的主要來源。假若這個觀察結果是一個普遍的現像,以目前沿岸缺氧區的數量和範圍不斷增加的情況下,有必要針對沿岸沉積物的N2O釋放量進行重新評估。
摘要(英) Nitrogen removal processes transfer reactive nitrogen from ecosystem to end produces of nitrous oxide (N2O) and/or dinitrogen (N2). However, the productions of N2O (300x CO2 in term of GHG potential) and N2 may lead to totally different climate feedback. The general features and understanding of those pathways are known, however, the quantitative information and their controlling factors remains unclear. Moreover, the anthropogenic perturbation on the nitrogen cycle is accelerating by massive artificial nitrogen inputs, leading to eutrophication of aquatic systems and serial environmental problems. Recent genomics studies also revealed many previously-unknown processes. An innovative technique is urgently needed to quantify the relative removal rates by various processes and even explore unknown processes. This thesis presented a newly developed 15N tracer method (IPTanaN2O) to quantify and/or distinguish complicated nitrogen removal pathways, including denitrification, nitrification, anammox, nitrifier denitrification and codenitrification. Applications of IPTanaN2O to the eutrophic wetland and coastal ecosystems were conducted. Both N2 and N2O production rates were determined simultaneous and assigned to each nitrogen removal pathways by IPTanaN2O at the wetland of Danshuei River in Taiwan and the coastal hypoxia area off Changjiang Estuary in China. In the case from Danshuei wetland, N2O production via denitrification contributed major nitrogen removal and might account for most of in situ air-water N2O emission. However, the investigations from the sediments off Changjiang Estuary revealed that entangled nitrifier denitrification and codenitrification explained half of N2O production, and denitrification N2 production was the major nitrogen removal process. Comparing with in situ water columns N2O production via nitrification and denitrification, sedimentary N2O production was the major source of water column dissolved N2O in the pre-hypoxia area off Changjiang Estuary. To our knowledge, this is the first 15N tracer evidence reported entangled nitrifier denitrification and codenitrification activity in marine sediments and illustrated the potential of IPTanaN2O. More manipulation experiments, such temperature, pCO2, DO…etc., can be pursued by using this new technique to examine pathway shifts in a quantitative way under global change context. There are four major contributions in this thesis. First, we presented a new tool, IPTanaN2O. Its capacity of determining rates and relative contributions of N2O in various nitrogen removal pathways will benefit researchers focus on issues of controlling factors specifically for different pathways. We also demonstrate how to identify the activity of entangled nitrifier denitrification and codenitrification, which might be distinguished further with genomics tools. Third, a hotspot of high and dynamic N2O production was revealed in sediments off Changjiang Estuary during pre-hypoxia period, which suggested a changing nitrogen removal processes in sediment accompany with devolving of water column hypoxia. Studies concerned on influences of hypoxia to the nitrogen cycle should treat hypoxia as a continuous process instead of an episode event, in order to have a comprehensive understanding in terms of the responds of each pathways under different hypoxia stages. Finally, sedimentary N2O production were evidenced an important source contributing to water column in a pre-hypoxia area off Changjiang Estuary. If our observation represents a general phenomenon, re-evaluation of N2O emission from costal sediment is required in currently increasing of coastal hypoxia regions.
關鍵字(中) ★ 脫硝作用
★ 氮循環
★ 氧化亞氮
★ 同位素
★ 缺氧區
★ 溼地
關鍵字(英) ★ denitrification
★ nitrogen cycle
★ nitrous oxide
★ stable isotope
★ hypoxia
★ wetland
論文目次 Table of content
Chapter 1. Introduction 1
1.1. The ecological significance of nitrogen 1
1.2. Nitrogen removal pathways 2
1.3. Quantifying denitrification and anammox in aquatic sediments 5
1.4. Eutrophication of coastal ecosystems 7
1.5. The aims of this research 8
1.6. References 9
Chapter 2. Simultaneous measurement of sedimentary N2 and N2O production and new 15N isotope pairing technique 13
2.1. Introduction 15
2.2. Instrument setup and evaluations 19
2.2.1. Pre-concentration system and instrument modification 19
2.2.2. Validation of instrument modifications 22
2.3. Development of IPT 24
2.3.1. Reported IPT estimators 24
2.3.2. Newly proposed IPT method 27
2.4. Field experiment and assessment of IPT estimators 30
2.4.1. Sampling site and experiment design 30
2.4.2. Evaluation of different versions of IPT 32
2.4.3. Validate assumptions of our new IPTanaN2O 36
2.4.4. Uncounted nitrogen conversion pathways in IPTanaN2O 40
2.5. Conclusions and implications 43
Appendix 44
2.6. References 47
Chapter 3. Sedimentary nitrogen removal and N2O production pathways in sediments off Changjiang River 53
3.1. Introduction 55
3.2. Methods and materials 56
3.2.1. Sample collections 56
3.2.2. Chemical analysis in water column 58
3.2.3. Sediment Characteristics 58
3.2.4. Measurement of rates of N2 and N2O production with 15N-NO3- 59
3.2.5. Confirmation of anammox and denitrification in slurry incubations 59
3.2.6. Time-series experiment 60
3.2.7. Concentration-series experiment 61
3.2.8. Gaseous 15N-N2 and 15N-N2O isotope analyses 61
3.2.9. Calculation of rates of N2 and N2O production 61
3.3. Results 63
3.3.1. Sediment and water column characteristics 63
3.3.2. Detecting anammox and other potential pathways 66
3.3.3. Rates of N2 and N2O production of denitrification 69
3.3.4. Rates of hybrid N2O production in unidentified non-denitrification pathways 73
3.4. Discussions 74
3.4.1. Expand the application of the isotope pairing technique 74
3.4.2. Candidates of unidentified hybrid N2O pathways 75
3.4.3. Absence of anammox activity 77
3.4.4. Production of N2 and N2O in the pre-hypoxia area 78
3.5. References 80
Chapter 4. Comparison nitrous oxide production between water column and sediment during pre-hypoxic period off Changjiang Estuary 87
4.1. Introduction 88
4.2. Methods and materials 90
4.2.1. Sample collections 90
4.2.2. Chemical analysis in water column 91
4.2.3. Measurements of N2O production rates in water column 91
4.2.4. Computation of sea-to-air fluxes 92
4.3. Results 92
4.3.1. Sediment and water column characteristics 92
4.3.2. Sea-to-air fluxes of N2O 95
4.3.3. Water column N2O production from ammonium oxidation and denitrification 96
4.3.4. Rates of N2O production in upper layer sediments 97
4.4. Discussions 98
4.4.1. Accumulated N2O in pre-hypoxic water column 98
4.4.2. Production rates of N2O in pre-hypoxic water column 98
4.4.3. Contribution of water column and sedimentary N2O production to accumulated N2O in the trapezoid region 100
4.5. References 103
5. Conclusions 109
參考文獻 Brandes, J. A., Devol, A. H., and Deutsch, C.: New developments in the marine nitrogen cycle, Chemical Reviews, 107, 577-589, 2007.
Canfield, D., Glazer, A., and Falkowski, P.: The evolution and future of earth’s nitrogen cycle, Science, 330, 192, 2010.
Chai, C., Yu, Z., Song, X., and Cao, X.: The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China, Hydrobiologia, 563, 313-328, 2006.
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B., and Acuna-Gonzalez, J.: N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica, Nature, 422, 606-608, 2003.
Dalsgaard, T. and Thamdrup, B.: Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments, Applied And Environmental Microbiology, 68, 3802-3808, 2002.
Diaz, R. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926, 2008.
Dong, L., Thornton, D., Nedwell, D., and Underwood, G.: Denitrification in sediments of the River Colne estuary, England, Marine Ecology Progress Series, 203, 109-122, 2000.
Engström, P., Dalsgaard, T., Hulth, S., and Aller, R. C.: Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments, Geochimica Et Cosmochimica Acta, 69, 2057-2065, 2005.
Erler, D., Eyre, B., and Davison, L.: The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland, Environmental science & technology, 42, 9144-9150, 2008.
Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., and Voytek, M. A.: Methods for measuring denitrification: diverse approaches to a difficult problem, Ecological Applications, 16, 2091-2122, 2006.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293, 2008.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D′Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., and Fox, H. E.: A global map of human impact on marine ecosystems, Science, 319, 948-952, 2008.
Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., and Billen, G.: Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems, Frontiers in Ecology and the Environment, 9, 18-26, 2011.
Howarth, R. W.: Coastal nitrogen pollution: a review of sources and trends globally and regionally, Harmful Algae, 8, 14-20, 2008.
Hulth, S., Aller, R., and Gilbert, F.: Coupled anoxic nitrification/manganese reduction in marine sediments, Geochimica Et Cosmochimica Acta, 63, 49-66, 1999.
Jensen, M. M., Kuypers, M. M. M., Lavik, G., and Thamdrup, B.: Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea, Limnology and Oceanography, 53, 23-36, 2008.
Kuenen, J. G.: Anammox bacteria: from discovery to application, Nat Rev Micro, 6, 320-326, 2008.
Meyer, R. L., Allen, D. E., and Schmidt, S.: Nitrification and denitrification as sources of sediment nitrous oxide production: A microsensor approach, Marine Chemistry, 110, 68-76, 2008.
Mulder, A., Graaf, A. A., Robertson, L. A., and Kuenen, J. G.: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor, FEMS Microbiology Ecology, 16, 177-184, 1995.
Nicholls, J. and Trimmer, M.: Widespread occurrence of the anammox reaction in estuarine sediments, Aquatic Microbial Ecology, 55, 105-113, 2009.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiology Letters, 86, 357-362, 1992.
Nixon, S. W.: Coastal marine eutrophication: a definition, social causes, and future concerns, Ophelia, 41, 199-219, 1995.
Rabalais, N. N., Turner, R. E., and Wiseman Jr, W. J.: Gulf of Mexico hypoxia, AKA" The dead zone", Annual Review of ecology and Systematics, 2002. 235-263, 2002.
Revsbech, N. P., Risgaard-Petersen, N., Schramm, A., and Nielsen, L. P.: Nitrogen transformations in stratified aquatic microbial ecosystems, Antonie van Leeuwenhoek, 90, 361-375, 2006.
Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M. S. M., Enrich-Prast, A., Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine sediment, Aquatic microbial ecology, 36, 293-304, 2004.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. Methods, 1, 63-73, 2003.
Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., and Dalsgaard, T.: Denitrification and anammox activity in Arctic marine sediments, Limnology and Oceanography, 49, 1493-1502, 2004.
Rysgaard, S., Risgaard-Petersen, N., Sloth, N. P., Jensen, K., and Nielsen, L. P.: Oxygen regulation of nitrification and denitrification in sediments, Limnology and Oceanography, 39, 1643-1652, 1994.
Schubert, C. J., Durisch-Kaiser, E., Wehrli, B., Thamdrup, B., Lam, P., and Kuypers, M. M. M.: Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika), Environmental Microbiology, 8, 1857-1863, 2006.
Shen, Z., Liu, Q., Zhang, S., Miao, H., and Zhang, P.: A nitrogen budget of the Changjiang River catchment, AMBIO: A Journal of the Human Environment, 32, 65-69, 2003.
Spott, O., Russow, R., and Stange, C. F.: Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation, Soil Biology and Biochemistry, 43, 1995-2011, 2011.
Strous, M., Kuenen, J., and Jetten, M.: Key physiology of anaerobic ammonium oxidation, Applied And Environmental Microbiology, 65, 3248, 1999.
Tanimoto, T., Hatano, K., Kim, D., Uchiyama, H., and Shoun, H.: Co-denitrification by the denitrifying system of the fungus Fusarium oxysporum, FEMS Microbiology Letters, 93, 177-180, 1992.
Thamdrup, B.: Novel Pathways and organisms in global nitrogen cycling, Annual Review of Ecology, Evolution, and Systematics, 43, 2012.
Trimmer, M., Nicholls, J. C., and Deflandre, B.: Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom, Applied And Environmental Microbiology, 69, 6447, 2003.
Trimmer, M. and Purdy, K. J.: Evidence for the direct oxidation of organic nitrogen to N2 gas in the Arabian Sea, The ISME Journal, 2012. 2012.
Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores, Marine Ecology Progress Series, 326, 37-47, 2006.
Vajrala, N., Martens-Habbena, W., Sayavedra-Soto, L. A., Schauer, A., Bottomley, P. J., Stahl, D. A., and Arp, D. J.: Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea, Proceedings of the National Academy of Sciences, 110, 1006-1011, 2013.
Vitousek, P., Hattenschwiler, S., Olander, L., and Allison, S.: Nitrogen and nature, AMBIO: A Journal of the Human Environment, 31, 97-101, 2002.
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nature, 461, 78-81, 2009.
Webster, F. and Hopkins, D.: Contributions from different microbial processes to N2O emission from soil under different moisture regimes, Biology and Fertility of Soils, 22, 331-335, 1996.
Wenk, C. B., Blees, J., Zopfi, J., Veronesi, M., Bourbonnais, A., Schubert, C. J., Niemann, H., and Lehmann, M. F.: Anaerobic ammonium oxidation (anammox) bacteria and sulfide-dependent denitrifiers coexist in the water column of a meromictic south-alpine lake, Limnol. Oceanogr, 58, 1-12, 2013.
Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, 33, 1723-1732, 2001.
Zehr, J. P. and Ward, B. B.: Nitrogen cycling in the ocean: new perspectives on processes and paradigms, Appl. Environ. Microbiol, 68, 1015–1024, 2002.
Zhang, Y., Ruan, X. H., Op den Camp, H. J., Smits, T. J., Jetten, M. S., and Schmid, M. C.: Diversity and abundance of aerobic and anaerobic ammonium‐oxidizing bacteria in freshwater sediments of the Xinyi River (China), Environmental microbiology, 9, 2375-2382, 2007.
Zhao, Y., Xia, Y., Kana, T. M., Wu, Y., Li, X., and Yan, X.: Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China, Chemosphere, 93, 2124-2131, 2013.
Zhu, Z. Y., Zhang, J., Wu, Y., Zhang, Y. Y., Lin, J., and Liu, S. M.: Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition, Marine Chemistry, 125, 108-116, 2011.
Zumft, W. G.: Cell biology and molecular basis of denitrification, Microbiology and Molecular Biology Reviews, 61, 533, 1997.
Bange, H. W., Rapsomanikis, S., and Andreae, M. O.: Nitrous oxide in coastal waters, Global Biogeochem. Cy., 10, 197-207, 1996.
Bange, H. W.: New directions: the importance of oceanic nitrous oxide emissions, Atmos. Environ., 40, 198-199, 2006.
Bergsma, T. T., Ostrom, N. E., Emmons, M., and Robertson, G. P.: Measuring simultaneous fluxes from soil of N2O and N2 in the field using the 15N-gas “nonequilibrium” technique, Environ. Sci. Technol., 35, 4307-4312, 2001.
Brandes, J. A., Boctor, N. Z., Cody, G. D., Cooper, B. A., Hazen, R. M., and Yoder, H. S.: Abiotic nitrogen reduction on the early Earth, Nature, 395, 365-367, 1998.
Brandes, J. A., Devol, A. H., and Deutsch, C.: New developments in the marine nitrogen cycle, Chem. Rev., 107, 577-589, 2007.
Capone, D. G., Bronk, D. A., Mulholland, M. R., & Carpenter, E. J.: Nitrogen in the marine environment, Academic Press, 2008.
Crowe, S. A., Canfield, D. E., Mucci, A., Sundby, B., and Maranger, R.: Anammox, denitrification and fixed-nitrogen removal in sediments of the Lower St. Lawrence Estuary, Biogeosciences, 9, 4309-4321, 2012.
Dalsgaard, T., Nielsen, L. P., Brotas, V., Viaroli, P., Underwood, G. J. C., Nedwell, D. B., Sundback, K., Rysgaard, S., Miles, A., and Bartoli, M.: Protocol handbook for NICE-Nitrogen Cycling in Estuaries, National Environmental Research Institute, Copenhagen, Denmark, 2000.
Davidson, E. A.: Sources of nitric oxide and nitrous oxide following wetting of dry soil, Soil Sci. Soc. Am. J., 56, 95-102, 1992.
Devol, A. H.: Denitrification including anammox, in: Nitrogen in the Marine Environment, 2nd ed., edited by: Capone, D., Bronk, D., Mulholland, M., and Carpenter, E., Elsevier, Amsterdam, 263-301, 2008.
Dong, L. F., Smith, C. J., Papaspyrou, S., Stott, A., Osborn, A. M., and Nedwell, D. B.: Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom), Appl. Environ. Microb., 75, 3171-3179, 2009.
Dong, L. F., Naqasima-Sobey, M., Smith, C. J., Rusmana, I., Phillips, W., Stott, A., Osborn, A. M., and Nedwell, D. B.: Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries, Limnol. Oceanogr., 56, 279-291, 2011.
García-Ruiz, R., Pattinson, S. N., and Whitton, B. A.: Denitrification and nitrous oxide production in sediments of the Wiske, a lowland eutrophic river, Sci. Total Environ., 210, 307-320, 1998.
Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., and Voytek, M. A.: Methods for measuring denitrification: diverse approaches to a difficult problem, Ecol. Appl., 16, 2091-2122, 2006.
Jäntti, H., and Hietanen, S.: The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea, AMBIO, 41, 161-169, 2012.
Jensen, K. M., Jensen, M. H., and Kristensen, E.: Nitrification and denitrification in Wadden Sea sediments (Konigshafen, Island of Sylt, Germany) as measured by nitrogen isotope pairing and isotope dilution, Aquat. Microb. Ecol., 11, 181-191, 1996.
Joye, S. B., and Anderson, I. C.: Nitrogen cycling in coastal sediments, in: Nitrogen in the Marine Environment, 2nd ed., edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Academic Press, Amsterdam, 868-915, 2008.
Liss, P. S., and Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181-184, 1974.
Lohse, L., Kloosterhuis, H. T., Van Raaphorst, W., and Helder, W.: Denitrification rates as measured by the isotope pairing method and by the acetylene inhibition technique in continental shelf sediments of the North Sea, Mar. Ecol-Prog. Ser., 132, 169-179, 1996.
Luther, G. W., Sundby, B., Lewis, B. L., Brendel, P. J., and Silverberg, N.: Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen, Geochim. Cosmochim. Ac., 61, 4043-4052, 1997.
Master, Y., Shavit, U., and Shaviv, A.: Modified isotope pairing technique to study N transformations in polluted aquatic systems: Theory, Environ. Sci. Technol, 39, 1749-1756, 2005.
Mcllvin, M. R., and Casciotti, K. L.: Fully automated system for stable isotopic analyses of dissolved nitrous oxide at natural abundance levels, Limnol. Oceanogr. Methods, 8, 54-66, 2010.
Minjeaud, L., Bonin, P. C., and Michotey, V. D.: Nitrogen fluxes from marine sediments: quantification of the associated co-occurring bacterial processes, Biogeochemistry, 90, 141-157, 2008.
Mulder, A., Graaf, A. A., Robertson, L. A., and Kuenen, J. G.: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor, FEMS Microbiol. Ecol., 16, 177-184, 1995.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O, Biogeosciences, 7, 2159-2190, 2010.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Lett., 86, 357-362, 1992.
Poth, M., and Focht, D. D.: 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification, Appl. Environ. Microb., 49, 1134-1141, 1985.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. Methods, 1, 63-73, 2003.
Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M. S. M., Enrich-Prast, A., Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine sediment, Aquat. Microb. Ecol., 36, 293-304, 2004.
Rysgaard, S., Risgaard-Petersen, N., Sloth, N. P., Jensen, K., and Nielsen, L. P.: Oxygen regulation of nitrification and denitrification in sediments, Limnol. Oceanogr., 39, 1643-1652, 1994.
Seitzinger, S. P., and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Global Biogeochem. Cy., 12, 93-113, 1998.
Senga, Y., Mochida, K., Fukumori, R., Okamoto, N., and Seike, Y.: N2O accumulation in estuarine and coastal sediments: The influence of H2S on dissimilatory nitrate reduction, Estuar. Coast. Shelf S., 67, 231-238, 2006.
Simon, J.: Enzymology and bioenergetics of respiratory nitrite ammonification, FEMS Microbiol. Rev., 26, 285-309, 10.1111/j.1574-6976.2002.tb00616.x, 2002.
Smith, M. S., and Zimmerman, K.: Nitrous oxide production by nondenitrifying soil nitrate reducers, Soil Sci. Soc. Am. J., 45, 865-871, 1981.
Smith, M. S.: Dissimilatory Reduction of NO2− to NH4+ and N2O by a Soil Citrobacter sp., Appl. Environ. Microb., 43, 854-860, 1982.
Spott, O., Russow, R., Apelt, B., and Stange, C. F.: A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release using the zeolite Köstrolith SX6®, Rapid Commun.Mass Sp., 20, 3267-3274, 2006.
Stevens, R. J., Laughlin, R. J., Atkins, G. J., and Prosser, S. J.: Automated determination of nitrogen-15-labeled dinitrogen and nitrous oxide by mass spectrometry, Soil Sci. Soc. Am. J., 57, 981-988, 1993.
Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M.: The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biot., 50, 589-596, 1998.
Thamdrup, B., and Dalsgaard, T.: Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Appl. Environ. Microb., 68, 1312-1318, 2002.
Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores, Mar. Ecol-Prog. Ser., 326, 37-47, 2006.
Trimmer, M., and Nicholls, J. C.: Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic, Limnol. Oceanogr., 54, 577-589, 2009.
van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G.: Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor, Microbiol., 143, 2415, 1997.
Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem., 33, 1723-1732, 2001.
Wrage, N., Groenigen, J. W. v., Oenema, O., and Baggs, E. M.: A novel dual-isotope labelling method for distinguishing between soil sources of N2O, Rapid Commun.Mass Sp., 19, 3298-3306, 10.1002/rcm.2191, 2005.

Bange, H. W.: New directions: the importance of oceanic nitrous oxide emissions, Atmospheric Environment, 40, 198-199, 2006.
Bouwman, A. F.: Compilation of a global inventory of emissions of nitrous oxide, PhD, Agricultural Univ., Wageningen, Netherlands, 1995.
Chen, C., Gong, G., and Shiah, F.: Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world, Marine Environmental Research, 64, 399-408, 2007.
Chen, J., Ni, X., Liu, M., Chen, J., Mao, Z., Jin, H., and Pan, D.: Monitoring the occurrence of seasonal low‐oxygen events off the Changjiang Estuary through integration of remote sensing, buoy observations, and modeling, Journal of Geophysical Research: Oceans, 2014. 2014.
Codispoti, L.: Interesting Times for Marine N2O, Science, 327, 1339-1140, 2010.
Codispoti, L., Brandes, J. A., Christensen, J., Devol, A., Naqvi, S., Paerl, H. W., and Yoshinari, T.: The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Scientia Marina, 65, 85-105, 2001.
Codispoti, L. A.: An oceanic fixed nitrogen sink exceeding 400 Tg Na-1 vs the concept of homeostasis in the fixed-nitrogen inventory, Biogeosciences, 4, 233-253, 2007.
Dai, Z., Du, J., Zhang, X., Su, N., and Li, J.: Variation of Riverine Material Loads and Environmental Consequences on the Changjiang (Yangtze) Estuary in Recent Decades (1955− 2008)†, Environmental science & technology, 45, 223-227, 2010.
Dalsgaard, T. and Thamdrup, B.: Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments, Applied And Environmental Microbiology, 68, 3802-3808, 2002.
Dalsgaard, T., Thamdrup, B., and Canfield, D. E.: Anaerobic ammonium oxidation (anammox) in the marine environment, Research in Microbiology, 156, 457-464, 2005.
Devol, A. H.: Denitrification, Anammox, and N-2 Production in Marine Sediments. In: Annual Review of Marine Science, Vol 7, Carlson, C. A. and Giovannoni, S. J. (Eds.), Annual Review of Marine Science, Annual Reviews, Palo Alto, 2015.
Dong, L. F., Nedwell, D. B., and Stott, A.: Sources of nitrogen used for denitrification and nitrous oxide formation in sediments of the hypernutrified Colne, the nutrified Humber, and the oligotrophic Conwy estuaries, United Kingdom, Limnology and Oceanography, 51, 545-557, 2006.
Erler, D., Eyre, B., and Davison, L.: The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland, Environmental science & technology, 42, 9144-9150, 2008.
Fulweiler, R., Nixon, S., Buckley, B., and Granger, S.: Reversal of the net dinitrogen gas flux in coastal marine sediments, Nature, 448, 180-182, 2007.
Hsu, T. C. and Kao, S. J.: Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and newly integrated 15N isotope pairing technique, Biogeosciences, 10, 7847-7862, 2013.
Huang, D., Du, J., Moore, W. S., and Zhang, J.: Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (7Be, 210Pb, and 234Th), Journal of Geophysical Research: Oceans, 118, 1736-1748, 2013.
Jensen, H., Jørgensen, K., and Sørensen, J.: Diurnal variation of nitrogen cycling in coastal, marine sediments, Marine Biology, 83, 177-183, 1984.
Kao, S. J., Terence Yang, J. Y., Liu, K. K., Dai, M., Chou, W. C., Lin, H. L., and Ren, H.: Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea, Global Biogeochemical Cycles, 26, 2012.
Kool, D. M., Wrage, N., Zechmeister-Boltenstern, S., Pfeffer, M., Brus, D., Oenema, O., and Van Groenigen, J. W.: Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method, European Journal of Soil Science, 61, 759-772, 2010.
Law, C. S., Rees, A. P., and Owens, N. J. P.: Temporal variability of denitrification in estuarine sediments, Estuarine, Coastal and Shelf Science, 33, 37-56, 1991.
Master, Y., Shavit, U., and Shaviv, A.: Modified isotope pairing technique to study N transformations in polluted aquatic systems: Theory, Environ. Sci. Technol, 39, 1749-1756, 2005.
Meyer, R. L., Risgaard-Petersen, N., and Allen, D. E.: Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment, Applied And Environmental Microbiology, 71, 6142-6149, 2005.
Milliman, J. D. and Syvitski, J. P.: Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, The Journal of Geology, 1992. 525-544, 1992.
Minjeaud, L., Bonin, P. C., and Michotey, V. D.: Nitrogen fluxes from marine sediments: quantification of the associated co-occurring bacterial processes, Biogeochemistry, 90, 141-157, 2008.
Naqvi, S., Jayakumar, D., Narvekar, P., Naik, H., Sarma, V., D′Souza, W., Joseph, S., and George, M.: Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf, Nature, 408, 346-349, 2000.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiology Letters, 86, 357-362, 1992.
Pai, S.-C., Tsau, Y.-J., and Yang, T.-I.: pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Analytica Chimica Acta, 434, 209-216, 2001.
Poth, M. and Focht, D.: 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification, Applied And Environmental Microbiology, 49, 1134, 1985a.
Poth, M. and Focht, D. D.: 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification, Applied And Environmental Microbiology, 49, 1134-1141, 1985b.
Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M. S. M., Enrich-Prast, A., Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine sediment, Aquatic microbial ecology, 36, 293-304, 2004.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. Methods, 1, 63-73, 2003.
Rooks, C., Schmid, M. C., Mehsana, W., and Trimmer, M.: The depth specific significance and relative abundance of anaerobic ammonium oxidizing bacteria in estuarine sediments (Medway estuary, UK), FEMS Microbiology Ecology, 80, 19-29, 2012.
Schlesinger, W.: On the fate of anthropogenic nitrogen, Proceedings of the National Academy of Sciences, 106, 203, 2009.
Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., and Baggs, E. M.: Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway, Environmental Microbiology, 8, 214-222, 2006.
Song, G. D., Liu, S. M., Marchant, H., Kuypers, M. M. M., and Lavik, G.: Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment, Biogeosciences, 10, 6851-6864, 2013.
Spott, O., Russow, R., and Stange, C. F.: Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation, Soil Biology and Biochemistry, 43, 1995-2011, 2011.
Strous, M., Kuenen, J., and Jetten, M.: Key physiology of anaerobic ammonium oxidation, Applied And Environmental Microbiology, 65, 3248, 1999.
Trimmer, M. and Nicholls, J. C.: Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic, Limnology and Oceanography, 54, 577-589, 2009.
Trimmer, M., Nicholls, J. C., and Deflandre, B.: Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom, Applied And Environmental Microbiology, 69, 6447, 2003.
Trimmer, M. and Purdy, K. J.: Evidence for the direct oxidation of organic nitrogen to N2 gas in the Arabian Sea, The ISME Journal, 2012. 2012.
Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores, Marine Ecology Progress Series, 326, 37-47, 2006.
van Kessel, J.: Gas production in aquatic sediments in the presence and absence of nitrate, Water Research, 12, 291-297, 1978.
Wang, H., Dai, M., Liu, J., Kao, S.-J., Zhang, C., Cai, W.-J., Wang, G., Qian, W., Zhao, M., and Sun, Z.: Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary, Environmental Science & Technology, 2016. 2016.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments, Limnology and Oceanography, 39, 1985-1992, 1994.
Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, 33, 1723-1732, 2001.
Wu, Y., Zhang, J., Li, D., Wei, H., and Lu, R.: Isotope variability of particulate organic matter at the PN section in the East China Sea, Biogeochemistry, 65, 31-49, 2003.
Yan, W., Zhang, S., Sun, P., and Seitzinger, S. P.: How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: a temporal analysis for 1968–1997, Global Biogeochemical Cycles, 17, 2003.
Zehr, J. P. and Ward, B. B.: Nitrogen cycling in the ocean: new perspectives on processes and paradigms, Appl. Environ. Microbiol, 68, 1015–1024, 2002.
Zheng, Y., Jiang, X., Hou, L., Liu, M., Lin, X., Gao, J., Li, X., Yin, G., Yu, C., and Wang, R.: Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient, Journal of Geophysical Research: Biogeosciences, doi: 10.1002/2015JG003300, 2016. n/a-n/a, 2016.
Zhu, M.-X., Hao, X.-C., Shi, X.-N., Yang, G.-P., and Li, T.: Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. In: Applied Geochemistry, 2011a.
Zhu, Z. Y., Zhang, J., Wu, Y., Zhang, Y. Y., Lin, J., and Liu, S. M.: Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition, Marine Chemistry, 125, 108-116, 2011b.

Amouroux, D., Roberts, G., Rapsomanikis, S., and Andreae, M.: Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea, Estuarine, Coastal and Shelf Science, 54, 575-587, 2002.
Bange, H. W.: Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean. In: Nitrogen in the Marine Environmen, Elsevier, Amsterdam, 2008.
Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuarine, Coastal and Shelf Science, 70, 361-374, 2006.
Bange, H. W., Dahlke, S., Ramesh, R., Meyer-Reil, L.-A., Rapsomanikis, S., and Andreae, M.: Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea, Estuarine, Coastal and Shelf Science, 47, 807-817, 1998.
Barnes, J. and Owens, N. J. P.: Denitrification and Nitrous Oxide Concentrations in the Humber Estuary, UK, and Adjacent Coastal Zones, Marine Pollution Bulletin, 37, 247-260, 1999.
Barnes, J. and Upstill-Goddard, R.: N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters, JOURNAL OF GEOPHYSICAL RESEARCH, 116, G01006, 2011.
Bouwman, A. F.: Compilation of a global inventory of emissions of nitrous oxide, PhD, Agricultural Univ., Wageningen, Netherlands, 1995.
Capone, D. G.: Aspects of the marine nitrogen cycle with relevance to the dynamics of nitrous and nitric oxide. In: Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides, and halomethanes, Rogers, J. E. and Whitman, W. E. (Eds.), American Society for Microbiology, Washington DC, 1991.
Chai, C., Yu, Z., Shen, Z., Song, X., Cao, X., and Yao, Y.: Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam, Science of The Total Environment, 407, 4687-4695, 2009.
Chen, C., Gong, G., and Shiah, F.: Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world, Marine Environmental Research, 64, 399-408, 2007.
Dai, Z., Du, J., Zhang, X., Su, N., and Li, J.: Variation of Riverine Material Loads and Environmental Consequences on the Changjiang (Yangtze) Estuary in Recent Decades (1955− 2008)†, Environmental science & technology, 45, 223-227, 2010.
de Wilde, H. P. J. and de Bie, M. J. M.: Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere, Marine Chemistry, 69, 203-216, 2000.
Dong, L. F., Nedwell, D. B., Underwood, G. J. C., Thornton, D. C. O., and Rusmana, I.: Nitrous Oxide Formation in the Colne Estuary, England: the Central Role of Nitrite, Applied and Environmental Microbiology, 68, 1240-1249, 2002.
Duce, R., LaRoche, J., Altieri, K., Arrigo, K., Baker, A., Capone, D., Cornell, S., Dentener, F., Galloway, J., and Ganeshram, R.: Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320, 893, 2008.
Erler, D., Eyre, B., and Davison, L.: The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland, Environmental science & technology, 42, 9144-9150, 2008.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., and Myhre, G.: Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Climate Change 2007. The Physical Science Basis, 2007.
Howarth, R. W.: Coastal nitrogen pollution: a review of sources and trends globally and regionally, Harmful Algae, 8, 14-20, 2008.
Hsiao, S. S. Y., Hsu, T. C., Liu, J. w., Xie, X., Zhang, Y., Lin, J., Wang, H., Yang, J. Y. T., Hsu, S. C., Dai, M., and Kao, S. J.: Nitrification and its oxygen consumption along the turbid Chang Jiang River plume, Biogeosciences, 11, 2083-2098, 2014.
Hsu, T. C. and Kao, S. J.: Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and newly integrated 15N isotope pairing technique, Biogeosciences, 10, 7847-7862, 2013.
Li, X., Yu, Z., Song, X., Cao, X., and Yuan, Y.: Nitrogen and phosphorus budgets of the Changjiang River estuary, Chinese Journal of Oceanology and Limnology, 29, 762-774, 2011.
Milliman, J. D. and Syvitski, J. P.: Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, The Journal of Geology, 1992. 525-544, 1992.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments: response to global change, Global Change Biology, 21, 3219-3245, 2015.
Naqvi, S., Jayakumar, D., Narvekar, P., Naik, H., Sarma, V., D′Souza, W., Joseph, S., and George, M.: Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf, Nature, 408, 346-349, 2000.
Nevison, C., Weiss, R., and Erickson III, D.: Global oceanic emissions of nitrous oxide, JOURNAL OF GEOPHYSICAL RESEARCH, 100, 15809, 1995.
Pai, S.-C., Tsau, Y.-J., and Yang, T.-I.: pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Analytica Chimica Acta, 434, 209-216, 2001.
Punshon, S. and Moore, R.: Nitrous oxide production and consumption in a eutrophic coastal embayment, Marine Chemistry, 91, 37-51, 2004.
Rönner, U.: Distribution, production and consumption of nitrous oxide in the Baltic Sea, Geochimica et Cosmochimica Acta, 47, 2179-2188, 1983.
Robinson, A., Nedwell, D., Harrison, R., and Ogilvie, B.: Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK, Marine Ecology-Progress Series, 164, 59-71, 1998.
Seitzinger, S. P. and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Global Biogeochemical Cycles, 12, 93-113, 1998.
Seitzinger, S. P. and Nixon, S. W.: Eutrophication and the rate of denitrification and N20 production in coastal marine sediments, Limnology and Oceanography, 30, 1332-1339, 1985.
Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., and Baggs, E. M.: Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway, Environmental Microbiology, 8, 214-222, 2006.
Spott, O., Russow, R., and Stange, C. F.: Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation, Soil Biology and Biochemistry, 43, 1995-2011, 2011.
Suntharalingam, P., Le Quéré, C., Nevison, C., and Forster, G. L.: Quantifying the Impact of Anthropogenic Nitrogen Deposition on Oceanic Nitrous Oxide, GEOPHYSICAL RESEARCH LETTERS, 39, L07605, 2012.
Tanimoto, T., Hatano, K., Kim, D., Uchiyama, H., and Shoun, H.: Co-denitrification by the denitrifying system of the fungus Fusarium oxysporum, FEMS Microbiology Letters, 93, 177-180, 1992.
Trimmer, M. and Purdy, K. J.: Evidence for the direct oxidation of organic nitrogen to N2 gas in the Arabian Sea, The ISME Journal, 2012. 2012.
Tseng, Y.-F., Lin, J., Dai, M., and Kao, S.-J.: Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River, Biogeosciences, 11, 409-423, 2014.
Usui, T., Koike, I., and Ogura, N.: N2O production, nitrification and denitrification in an estuarine sediment, Estuarine, Coastal and Shelf Science 52, 769-781, 2001.
Wang, B.: Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary, Marine Environmental Research, 67, 53-58, 2009.
Wang, H., Dai, M., Liu, J., Kao, S.-J., Zhang, C., Cai, W.-J., Wang, G., Qian, W., Zhao, M., and Sun, Z.: Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary, Environmental Science & Technology, 2016. 2016.
Wang, H. V.: Overview of Hydrodynamic and Water Quality Modeling for Marine Environment, 2012. 2012.
Wanninkhof, R.: Relationship between wind speed and gas exchange, J. Geophys. Res, 97, 7373-7382, 1992.
Weiss, R. and Price, B.: Nitrous oxide solubility in water and seawater, Marine Chemistry, 8, 347-359, 1980.
Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, 33, 1723-1732, 2001.
Yoshida, N., Morimoto, H., Hirano, M., Koike, I., Matsuo, S., Wada, E., Saino, T., and Hattori, A.: Nitrification rates and 15N abundances of N2O and NO3- in the western North Pacific, 1989. 1989.
Zhang, G., Zhang, J., Liu, S., Ren, J., and Zhao, Y.: Nitrous oxide in the Changjiang(Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes, Biogeosciences, 7, 3505-3516, 2010.
Zhu, Z. Y., Zhang, J., Wu, Y., Zhang, Y. Y., Lin, J., and Liu, S. M.: Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition, Marine Chemistry, 125, 108-116, 2011.
指導教授 錢樺、高樹基 審核日期 2016-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明