博碩士論文 986410002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.207.136.184
姓名 蕭淞云(Sun-Yun Hsiao)  查詢紙本館藏   畢業系所 地球系統科學國際研究生博士學位學程
論文名稱 水域中硝化作用與氧化亞氮的產生:亞熱帶深水水庫與長江口擴散舌研究案例
(The nitrification and N2O production in aquatic environment: case studies in a subtropical deep reservoir and Chang Jiang River plume)
相關論文
★ 翡翠水庫之水文特性及水理水質之模式研究★ 翡翠水庫及其集水區之氫氧碳同位素 水文學研究
★ 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物★ 淡水河重金屬傳輸模式之發展
★ 淡水河流域鹼度、酸鹼值與主要離子 之時空變化★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖
★ 淡水河口水舌擺盪動力機制之研究★ 翡翠水庫之沉降顆粒及沉積物中 多環芳香族碳氫化合物(PAHs)之研究
★ 呂宋海峽內潮及其強化生地化通量之數值研究★ 南海時間序列測站(SEATS)碳循環之探討:一維物理-生地化耦合模式之應用
★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究★ 利用SPOT衛星影像探討蘭陽溪口淡水舌之時空變化
★ 潮汐作用對東海生地化循環及初級生產力之影響★ 淡水河流域溶解性有機碳通量之研究
★ 淡水河流域營養鹽濃度及溶氧之變化與一維數值模擬★ 利用衛星遙測資料探討南海與蘭陽溪河口生地化特性之時空變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 硝化作用是氮循環中一個重要的中間過程,它將氨氧化為亞硝酸或硝酸,並
產生氧化亞氮為副產物。它被認為是水域環境中溫室氣體氧化亞氮(N2O)的主要產生過程。氧化亞氮是第三大人為溫室氣體,自從上個世紀大量使用化學合成的肥料後,大氣中的氧化亞氮濃度便開始顯著升高。這些過量的氮留在土壤中或沖刷至水域環境中,便有可能經由硝化作用轉變為氧化亞氮。另一個在水域中自上個世紀以來因人類活動而增加的特徵便是懸浮顆粒物。本論文以穩定同位素示蹤劑法量測硝化作用速率,並探討懸浮顆粒於硝化作用及 N2O 生成的影響。在副熱帶與中營養化的翡翠水庫發現硝化作用速率與 N2O 皆主要分布於無光層,但銨在該處卻很少。沉降顆粒補集器(sediment trap)的結果顯示在冷季與颱風季時顆粒沉降通量較高,這些快速沉降顆粒物使是由於上游集水區的強降雨帶來並在水庫中型成混濁的中層流(interflow)現象。這些顆粒物上的有機物直接注入無光層可能作為畏光的硝化作用微生物的基質,促進了硝化作用速率以及 N2O 的累積。在長江口擴散舌區,同步量測的群聚呼吸率與硝化速率結果顯示在中等鹽度區域硝化作用需要的氧氣甚至比群聚呼吸率還高。而懸浮顆粒物上的鐵錳含量發現足以提供硝化作用所需的氧化劑,同時也發現其含量與硝化速率高度相關,顯示鐵錳氧化物可能代替氧氣作為硝化作用的氧化劑。此外,N2O 的產生速率也發現在最混濁的河口區高於其他區域。以上結果顯示水域中因強降雨或土壤侵蝕而增加的懸浮顆粒可以促進硝化作用並可能增加 N2O 的產生,進而加速全球暖化。
摘要(英) Nitrification is an important intermediate process in nitrogen cycle that oxidizes ammonia to nitrite and/or nitrate and produces N2O as byproduct. Currently, nitrification has been recognized as the major source of N2O, which is regarded as one of the main greenhouse gases. Since 19th century, excessive use of chemical synthesized nitrogenous fertilizer has elevated the total amount of nitrogen in
environments. The excess nitrogen remained in soil and leached into aquatic environments may be transformed to N2O through nitrification. In addition, the enhanced soil erosion can elevate the suspended particles in aquatic environments. In
this dissertation we determined the rate of nitrification (NR) in turbid environments by the stable isotope tracer method to investigate the role of suspended particles on nitrification and N2O production. In the subtropical mesotrophic Feitsui Reservoir, high NR and N2O were recorded in the aphotic zone where rare ammonium and high particle sinking flux occurred. These fast-sinking particles in the aphotic zone was dominantly brought from the turbid interflows induced by heavy precipitation during cold season and typhoon periods. The light-sensitive nitrifying microorganisms may utilize the
remineralized organics on those particles as substrate source for nitrification and also N2O production. In Chang Jiang River plume, simultaneous measurement of NR and community respiration rate (CR) revealed that the oxygen demand of nitrification was greater than that of community respiration. However, the amounts of reactive Fe/Mn oxide of suspended particles seemed enough to support oxidant demand of nitrification. Meanwhile, the reactive Fe/Mn was significantly positive correlated to NR, indicating that the reactive Fe/Mn may serve as an alternative electron acceptor in nitrification. Moreover, the production rate of N2O from ammonium in the turbid river mouth is significantly higher than that in other relatively clear regions. The results suggested that the elevated suspended particles in aquatic environment due to soil erosion may enhance nitrification and also N2O production. Consequently, the increasing N2O may
potentially accelerate the global warming.
關鍵字(中) ★ 硝化作用
★ 氧化亞氮
★ 穩定同位素示蹤劑
★ 懸浮顆粒
★ 沉降顆粒
★ 水庫
★ 河口擴散舌
★ 鐵錳氧化物
關鍵字(英) ★ nitrification
★ nitrous oxide
★ stable isotope tracer
★ suspended particles
★ sinking particles
★ reservoirs
★ river plume
★ Fe/Mn oxide
論文目次 Table of content
Chapter 1. Introduction ............................................................................................... 1
1. Nitrogen cycle ........................................................................................................ 1
2. Nitrification and nitrifying microorganism ............................................................ 1
2.1 Substrate availability ........................................................................................ 3
2.2 Light sensitivity ............................................................................................... 4
2.3 Dissolved oxygen ............................................................................................. 5
3. Importance of nitrification ..................................................................................... 7
3.1 N2O production ................................................................................................ 7
4. Measuring the rate of nitrification ......................................................................... 9
4.1 DIN inventory changes .................................................................................... 9
4.2 Dark assimilation of 14C-carbonate. ................................................................. 9
4.3 Stable isotopic tracer method ......................................................................... 10
5. Aim of this study .................................................................................................. 12
6. Reference: ............................................................................................................ 13
Chapter 2. Hydrological control of N2O emission in Feitsui Reservoir ................ 18
1. Introduction .......................................................................................................... 19
2. Material and method ............................................................................................ 20
2.1. Study site and sampling ................................................................................ 20
2.2. Hydrographic and weather data .................................................................... 21
2.3 Total suspended material (TSM) .................................................................... 21
2.4 N2O concentration .......................................................................................... 22
2.5 N2O saturation percentage and emission flux calculation ............................. 22
2.6 Nitrification rate(NR) and denitrification rate(DR) ....................................... 22
3. Result ................................................................................................................... 25
3.1 Temporal variation of Inflow flux .................................................................. 25
3.2 Temporal and vertical variation of environmental variables in water column
.............................................................................................................................. 25
3.2.1 Temperature ................................................................................................ 25
3.2.2 DO ............................................................................................................... 25
3.2.3 TSM ............................................................................................................ 26
3.2.4. N2O ............................................................................................................ 26
3.2.5. NR and DR ................................................................................................. 26
3.3 N2O emission flux .......................................................................................... 27
4. Discussion ............................................................................................................ 31
4.1 Comparison of N2O emission flux in lakes or reservoirs .............................. 31
4.2 Mixed layer depth influenced N2O distribution ............................................. 31
vi
4.3 N2O production mechanism in Feitsui reservoir ............................................ 32
4.4 The weak bottom water ventilation enhanced N2O accumulation ................. 33
5. Conclusion and implication ................................................................................. 39
6. Reference: ............................................................................................................ 40
Chapter 3. The turbid interflow and nitrification in Feitsui Reservoir ................ 43
1. Introduction .......................................................................................................... 44
2. Material and method ............................................................................................ 45
2.1. Study site ....................................................................................................... 45
2.2. Hydrographic and weather data .................................................................... 45
2.3 Sampling ........................................................................................................ 47
2.4 Analytical method .......................................................................................... 47
2.5 Incubation experiment ................................................................................... 48
2.6. Statistic analysis ............................................................................................ 48
3. Result ................................................................................................................... 48
3.1. Temporal variation of physical, chemical and biological parameters ........... 48
3.1.1. Temperature, dissolved oxygen and inflow rate ........................................ 48
3.1.2. PAR and chl a ............................................................................................. 49
3.1.3 Dissolved inorganic nitrogen ...................................................................... 49
3.1.4 NR ............................................................................................................... 50
3.1.5 DOC ............................................................................................................ 50
3.1.6 POC and TSM ............................................................................................. 51
3.1.7 BP ................................................................................................................ 51
3.2 Sediment flux and its interplay with NR........................................................ 58
4. Discussion ............................................................................................................ 62
4.1 The magnitude of nitrification in Feitsui Reservoir ....................................... 62
4.2 Competition of primary production and nitrification in euphotic zone ......... 62
4.3 Lateral transported organic matter as important substrate for nitrification ... 63
5. Conclusion ........................................................................................................... 65
6. Reference ............................................................................................................. 66
Chapter 4. Nitrification and its oxygen consumption and N2O production along
the turbid Changjiang River plume ......................................................................... 68
1. Introduction .......................................................................................................... 70
2. Material and method ............................................................................................ 72
2.1 Sampling ........................................................................................................ 72
2.2 Hydrographical and chemical data ................................................................. 75
2.3 Incubation experiments .................................................................................. 76
2.4 Archaeal and β-proteobacterial functional gene abundance .......................... 77
vii
2.5. Statistic analysis ............................................................................................ 77
3. Results .................................................................................................................. 78
3.1 Distribution of hydrographic and chemical parameters ................................. 78
3.1.1 Salinity and DO........................................................................................... 78
3.1.2 Dissolved inorganic and organic nitrogen .................................................. 78
3.1.3 Suspended particles ..................................................................................... 79
3.2 NR and its correlation among nitrogenous nutrient and TSM ....................... 79
3.3 Distribution of N2O and N2O production rate from nitrification(N2OPR) .... 82
3.4 Community respiration .................................................................................. 83
3.5 The nitrification rate and the amoA abundance ............................................. 83
4. Discussion ............................................................................................................ 90
4.1 The interplay of nitrogenous nutrient and TSM in nitrification ..................... 90
4.1.1 Ammonium ................................................................................................. 90
4.1.2 Dissolved organic nitrogen ......................................................................... 91
4.1.3 Suspended particle ...................................................................................... 92
4.1.4 Salinity ........................................................................................................ 93
4.2 Reactive Fe as oxidant supply for nitrification in the turbid river plume ...... 94
4.2.1 Community respiration and the oxygen demand of nitrification ................ 94
4.2.2 Fe/Mn oxide as oxidant for nitrification ..................................................... 96
4.3. The N2O yield in nitrification preferred to occur in turbid river mouth ..... 105
5. Conclusions ........................................................................................................ 106
6. References .......................................................................................................... 107
Chapter 5 Conclusion .............................................................................................. 114
1. N2O emission flux .............................................................................................. 114
2. Substrate source of nitrification ......................................................................... 115
3. Oxidant of nitrification ...................................................................................... 115
4. The suspended particles in aquatic environment ............................................... 116
5. Reference: .......................................................................................................... 119
參考文獻 Chapter 1. Introduction
Agogue, H., M. Brink, J. Dinasquet, and G. J. Herndl (2008), Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic, Nature, 456(7223), 788-U772.
Anderson, I. C., and J. S. Levine (1986), Relative Rates of Nitric-Oxide and Nitrous-Oxide Production by Nitrifiers, Denitrifiers, and Nitrate Respirers, Appl Environ Microb, 51(5), 938-945.
Andersson, M. G. I., N. Brion, and J. J. Middelburg (2006), Comparison of nitrifier activity versus growth in the Scheldt estuary - a turbid, tidal estuary in northern Europe, Aquat Microb Ecol, 42(2), 149-158.
Bange, H. W., and M. O. Andreae (1999), Nitrous oxide in the deep waters of the world′s oceans, Global Biogeochem Cy, 13(4), 1127-1135.
Bange, H. W., S. Rapsomanikis, and M. O. Andreae (1996), Nitrous oxide in coastal waters, Global Biogeochem Cy, 10(1), 197-207.
Bedard, C., and R. Knowles (1989), Physiology, Biochemistry, and Specific Inhibitors of Ch4, Nh4+, and Co Oxidation by Methanotrophs and Nitrifiers, Microbiol Rev, 53(1), 68-84.
Beman, J. M., R. Sachdeva, and J. A. Fuhrman (2010), Population ecology of nitrifying Archaea and Bacteria in the Southern California Bight, Environ Microbiol, 12(5), 1282-1292.
Beman, J. M., B. N. Popp, and S. E. Alford (2012), Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean, Limnol. Oceanogr, 57(3), 711-726.
Billen, G. (1976), Evaluation of Nitrifying Activity in Sediments by Dark Bicarbonate-C-14 Incorporation, Water Res, 10(1), 51-57.
Bock, E. (1965), Vergleichende Untersuchungen Uber Die Wirkung Sichtbaren Lichtes Auf Nitrosomonas Europaea Und Nitrobacter Winogradskyi, Arch Mikrobiol, 51(1), 18-&.
Brochier-Armanet, C., B. Boussau, S. Gribaldo, and P. Forterre (2008), Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota, Nat Rev Microbiol, 6(3), 245-252.
Ciais, P., et al. (2013), Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeRep., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Francis, C. A., J. M. Beman, and M. M. Kuypers (2007), New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation, The ISME journal, 1(1), 19-27.
Fujii, A., S. Toyoda, O. Yoshida, S. Watanabe, K. Sasaki, and N. Yoshida (2013), Distribution of nitrous oxide dissolved in water masses in the eastern subtropical North Pacific and its origin inferred from isotopomer analysis, J Oceanogr, 69(2), 147-157.
Glover, H. E. (1985), The Relationship between Inorganic Nitrogen Oxidation and Organic-Carbon Production in Batch and Chemostat Cultures of Marine Nitrifying Bacteria, Arch Microbiol, 142(1), 45-50.
Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. Mcelroy, F. W. Valois, and S. W. Watson (1980), Production of NO2- and N2O by Nitrifying Bacteria at Reduced Concentrations of Oxygen, Appl Environ Microb, 40(3), 526-532.
Gruber, N. (2008), The marine nitrogen cycle: overview and challenage, in Nitrogen in marine environment, edited, Elsevier, Oxford, UK.
Guerrero, M. A., and R. D. Jones (1996a), Photoinhibition of marine nitrifying bacteria .1. Wavelength-dependent response, Mar Ecol Prog Ser, 141(1-3), 183-192.
Guerrero, M. A., and R. D. Jones (1996b), Photoinhibition of marine nitrifying bacteria .2. Dark recovery after monochromatic or polychromatic irradiation, Mar Ecol Prog Ser, 141(1-3), 193-198.
Hallam, S. J., T. J. Mincer, C. Schleper, C. M. Preston, K. Roberts, P. M. Richardson, and E. F. DeLong (2006a), Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota, Plos Biol, 4(4), 520-536.
Hallam, S. J., K. T. Konstantinidis, N. Putnam, C. Schleper, Y. Watanabe, J. Sugahara, C. Preston, J. de la Torre, P. M. Richardson, and E. F. DeLong (2006b), Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum, P Natl Acad Sci USA, 103(48), 18296-18301.
Hartmann, D. L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild and P.M. Zhai, (2013), Observations: Atmosphere and Surface. in "Climate Change 2013: The Physical Science Basis."Rep., Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Horrigan, S. G., A. F. Carlucci, and P. M. Williams (1981), Light Inhibition of Nitrification in Sea-Surface Films, J Mar Res, 39(3), 557-565.
Hulth, S., R. C. Aller, and F. Gilbert (1999), Coupled anoxic nitrification manganese reduction in marine sediments, Geochim Cosmochim Ac, 63(1), 49-66.
Jiao, N., et al. (2010), Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean, Nat Rev Microbiol, 8(8), 593-599.
Karner, M. B., E. F. DeLong, and D. M. Karl (2001), Archaeal dominance in the mesopelagic zone of the Pacific Ocean, Nature, 409(6819), 507-510.
Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl (2005), Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, 437(7058), 543-546.
Laudelou.H, P. C. Simonart, and Vandroog.R (1968), Calorimetric Measurement of Free Energy Utilization by Nitrosomonas and Nitrobacter, Arch Mikrobiol, 63(3), 256-&.
Lipschultz, F., S. C. Wofsy, B. B. Ward, L. A. Codispoti, G. Friedrich, and J. W. Elkins (1990), Bacterial Transformations of Inorganic Nitrogen in the Oxygen-Deficient Waters of the Eastern Tropical South-Pacific Ocean, Deep-Sea Res, 37(10), 1513-+.
Luther, G. W., and J. I. Popp (2002), Kinetics of the abiotic reduction of polymeric manganese dioxide by nitrite: An anaerobic nitrification reaction, Aquat Geochem, 8(1), 15-36.
Luther, G. W., B. Sundby, B. L. Lewis, P. J. Brendel, and N. Silverberg (1997), Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen, Geochim Cosmochim Ac, 61(19), 4043-4052.
Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl (2009), Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461(7266), 976-U234.
Merbt, S. N., D. A. Stahl, E. O. Casamayor, E. Marti, G. W. Nicol, and J. I. Prosser (2012), Differential photoinhibition of bacterial and archaeal ammonia oxidation, Fems Microbiol Lett, 327(1), 41-46.
Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama (2007), Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the northeastern Japan Sea, Microbes and environments, 22(4), 365-372.
Nevison, C., J. H. Butler, and J. Elkins (2003), Global distribution of N2O and the ΔN2O‐AOU yield in the subsurface ocean, Global Biogeochem Cy, 17(4).
Rakestraw, N. W. (1936), The occurrence and significance of nitrite in the sea, Biol Bull-Us, 71(1), 133-167.
Ravishankara, A. R., J. S. Daniel, and R. W. Portmann (2009), Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326(5949), 123-125.
Santoro, A. E., and K. L. Casciotti (2011), Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation, Isme J, 5(11), 1796-1808.
Santoro, A. E., C. A. Francis, N. R. de Sieyes, and A. B. Boehm (2008), Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary, Environ Microbiol, 10(4), 1068-1079.
Santoro, A. E., C. Buchwald, M. R. McIlvin, and K. L. Casciotti (2011), Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea, Science, 333(6047), 1282-1285.
Shen, T. L., M. Stieglmeier, J. L. Dai, T. Urich, and C. Schleper (2013), Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors, Fems Microbiol Lett, 344(2), 121-129.
Small, G. E., G. S. Bullerjahn, R. W. Sterner, B. F. Beall, S. Brovold, J. C. Finlay, R. M. McKay, and M. Mukherjee (2013), Rates and controls of nitrification in a large oligotrophic lake, Limnol. Oceanogr, 58(1), 276-286.
Stahl, D. A., and J. R. de la Torre (2012), Physiology and Diversity of Ammonia-Oxidizing Archaea, Annu Rev Microbiol, 66, 83-101.
Tourna, M., et al. (2011), Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil, P Natl Acad Sci USA, 108(20), 8420-8425.
Vanzella, A., M. A. Guerrero, and R. D. Jones (1989), Effect of Co and Light on Ammonium and Nitrite Oxidation by Chemolithotrophic Bacteria, Mar Ecol Prog Ser, 57(1), 69-76.
Von Brand, T., N. W. Rakestraw, and C. E. Renn (1937), The experimental decomposition and regeneration of nitrogenous organic matter in sea water, Biol Bull-Us, 72(2), 165-175.
Walker, C. B., et al. (2010), Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea, P Natl Acad Sci USA, 107(19), 8818-8823.
Ward, B. B. (2008), Nitrification in marine systems, in Nitrogen in marine enviroment, edited by L. A. Codispoti, D. G. Capone, D. A. Bronk, M. R. Mulholland and E. J. Carpenter, pp. 199-261, Elsevier.
Ward, B. B. (2011), Measurement and Distribution of Nitrification Rates in the Oceans, Method Enzymol, 486, 307-323.
Wilson, S. T., D. A. del Valle, M. Segura-Noguera, and D. M. Karl (2014), A role for nitrite in the production of nitrous oxide in the lower euphotic zone of the oligotrophic North Pacific Ocean, Deep-Sea Res Pt I, 85, 47-55.
Wuchter, C., et al. (2006), Archaeal nitrification in the ocean, P Natl Acad Sci USA, 103(33), 12317-12322.
Yamagishi, H., M. B. Westley, B. N. Popp, S. Toyoda, N. Yoshida, S. Watanabe, K. Koba, and Y. Yamanaka (2007), Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California, J Geophys Res-Biogeo, 112(G2).
Yang, W. H., K. A. Weber, and W. L. Silver (2012), Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction, Nature Geoscience, 5(8), 538-541.

Chapter 2. Hydrological control of N2O emission in Feitsui Reservoir
Beman, J. M., C.-E. Chow, A. L. King, Y. Feng, J. A. Fuhrman, A. Andersson, N. R. Bates, B. N. Popp, and D. A. Hutchins (2011), Global declines in oceanic nitrification rates as a consequence of ocean acidification, Proceedings of the National Academy of Sciences, 108(1), 208-213.
Chen, Y., D. X. Yuan, and Q. L. Li (2007), Determination of nitrous oxide in seawater by room temperature purge and trap-gas chromatography, Chinese J Anal Chem, 35(6), 897-900.
Chen, Y. J. C., S. C. Wu, B. S. Lee, and C. C. Hung (2006), Behavior of storm-induced suspension interflow in subtropical Feitsui Reservoir, Taiwan, Limnol Oceanogr, 51(2), 1125-1133.
Chou, W. S., T. C. Lee, J. Y. Lin, and S. L. Yu (2007), Phosphorus load reduction goals for feitsui reservoir watershed, Taiwan, Environ Monit Assess, 131(1-3), 395-408.
Davidson, E. A. (2009), The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, Nat Geosci, 2(9), 659-662.
Fan, C. W., and S. J. Kao (2008), Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan, Sci Total Environ, 393(2-3), 326-332.
Hartmann, D. L., et al. (2013), Observations: Atmosphere and Surface. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in Climate Change 2013: The Physical Science Basis, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge University Press, Cambridge, United Kingdom New York, NY, USA.
Hendzel, L., C. Matthews, J. Venkiteswaran, V. St. Louis, D. Burton, E. Joyce, and R. Bodaly (2005), Nitrous oxide fluxes in three experimental boreal forest reservoirs, Environmental science & technology, 39(12), 4353-4360.
Hsiao, S.-Y., et al. (2013), Nitrification and its oxygen consumption along the turbid Changjiang River plume, Biogeosciences Discussions, 10(5), 8685-8713.
Hsu, T.-C., and S.-J. Kao (2013), Technical Note: Simultaneous measurement of sedimentary N 2 and N 2 O production and a modified 15 N isotope pairing technique, Biogeosciences, 10(12).
Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola, and P. J. Martikainen (2003), Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52(3), 609-621.
Ishijima, K., S. Sugawara, K. Kawamura, G. Hashida, S. Morimoto, S. Murayama, S. Aoki, and T. Nakazawa (2007), Temporal variations of the atmospheric nitrous oxide concentration and its delta N-15 and delta O-18 for the latter half of the 20th century reconstructed from firn air analyses, J Geophys Res-Atmos, 112(D3).
Knowles, R., D. R. Lean, and Y. K. Chan (1981), Nitrous oxide concentrations in lakes: variations with depth and time, Limnol. Oceanogr, 26(5), 855-866.
Liu, L. X., M. Xu, M. Lin, and X. Zhang (2013), Spatial Variability of Greenhouse Gas Effluxes and Their Controlling Factors in the Poyang Lake in China, Pol J Environ Stud, 22(3), 749-758.
Liu, X. L., C. Q. Liu, S. L. Li, F. S. Wang, B. L. Wang, and Z. L. Wang (2011), Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China, Atmospheric Environment, 45(31), 5458-5468.
Liu, Y. S., R. B. Zhu, D. W. Ma, H. Xu, Y. H. Luo, T. Huang, and L. G. Sun (2011), Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica, Atmospheric Environment, 45(7), 1464-1475.
McCrackin, M. L., and J. J. Elser (2011), Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition, Global Biogeochem Cy, 25.
Mengis, M., R. Gachter, and B. Wehrli (1996), Nitrous oxide emissions to the atmosphere from an artificially oxygenated lake, Limnol Oceanogr, 41(3), 548-553.
Mengis, M., R. Gächter, and B. Wehrli (1997), Sources and sinks of nitrous oxide (N2O) in deep lakes, Biogeochemistry, 38(3), 281-301.
Miyajima, T., Y. Yamada, E. Wada, T. Nakajima, T. Koitabashi, Y. T. Hanba, and K. Yoshii (1997), Distribution of greenhouse gases, nitrite, and delta C-13 of dissolved inorganic carbon in Lake Biwa: Implications for hypolimnetic metabolism, Biogeochemistry, 36(2), 205-221.
Prather, M. J., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys Res Lett, 39.
Ravishankara, A. R., J. S. Daniel, and R. W. Portmann (2009), Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326(5949), 123-125.
Sigman, D. M., K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bohlke (2001), A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal Chem, 73(17), 4145-4153.
Smith, V. H., S. B. Joye, and R. W. Howarth (2006), Eutrophication of freshwater and marine ecosystems, Limnol Oceanogr, 51(1), 351-355.
Syvitski, J. P. M., C. J. Vorosmarty, A. J. Kettner, and P. Green (2005), Impact of humans on the flux of terrestrial sediment to the global coastal ocean, Science, 308(5720), 376-380.
Wang, H., W. Wang, C. Yin, Y. Wang, and J. Lu (2006), Littoral zones as the “hotspots” of nitrous oxide (N< sub> 2 O) emission in a hyper-eutrophic lake in China, Atmospheric Environment, 40(28), 5522-5527.
Wang, S. L., C. Q. Liu, K. M. Yeager, G. J. Wan, J. Li, F. X. Tao, Y. C. Lue, F. Liu, and C. X. Fan (2009), The spatial distribution and emission of nitrous oxide (N2O) in a large eutrophic lake in eastern China: Anthropogenic effects, Sci Total Environ, 407(10), 3330-3337.
Wanninkhof, R. (1992), Relationship between Wind-Speed and Gas-Exchange over the Ocean, J Geophys Res-Oceans, 97(C5), 7373-7382.
Ward, B. B. (2011), Measurement and Distribution of Nitrification Rates in the Oceans, Method Enzymol, 486, 307-323.
Weiss, R. F., and B. A. Price (1980), Nitrous-Oxide Solubility in Water and Seawater, Mar Chem, 8(4), 347-359.

Chapter 3. The turbid interflow and nitrification in Feitsui Reservoir
Beman, J. M., C.-E. Chow, A. L. King, Y. Feng, J. A. Fuhrman, A. Andersson, N. R. Bates, B. N. Popp, and D. A. Hutchins (2011), Global declines in oceanic nitrification rates as a consequence of ocean acidification, Proceedings of the National Academy of Sciences, 108(1), 208-213.
Carini, S. A., and S. B. Joye (2008), Nitrification in Mono Lake, California: Activity and community composition during contrasting hydrological regimes, Limnol Oceanogr, 53(6), 2546-2557.
Chen, Y. J. C., S. C. Wu, B. S. Lee, and C. C. Hung (2006), Behavior of storm-induced suspension interflow in subtropical Feitsui Reservoir, Taiwan, Limnol Oceanogr, 51(2), 1125-1133.
Chung, S. W., and R. C. Gu (1998), Two-dimensional simulations of contaminant currents in stratified reservoir, J Hydraul Eng-Asce, 124(7), 704-711.
Fan, C. W., and S. J. Kao (2008), Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan, Sci Total Environ, 393(2-3), 326-332.
Joye, S. B., T. L. Connell, L. G. Miller, R. S. Oremland, and R. S. Jellison (1999), Oxidation of ammonia and methane in an alkaline, saline lake, Limnol Oceanogr, 44(1), 178-188.
Kao, S. J., J. Y. T. Yang, K. K. Liu, M. H. Dai, W. C. Chou, H. L. Lin, and H. J. Ren (2012), Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea, Global Biogeochem Cy, 26.
Liu, S. C., C. B. Fu, C. J. Shiu, J. P. Chen, and F. T. Wu (2009), Temperature dependence of global precipitation extremes, Geophys Res Lett, 36.
Lomas, M. W., and F. Lipschultz (2006), Forming the primary nitrite maximum: Nitrifiers or phytoplankton?, Limnol Oceanogr, 51(5), 2453-2467.
Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl (2009), Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461(7266), 976-U234.
Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow (1987), Vertex - Carbon Cycling in the Northeast Pacific, Deep-Sea Res, 34(2), 267-285.
Merbt, S. N., D. A. Stahl, E. O. Casamayor, E. Marti, G. W. Nicol, and J. I. Prosser (2012), Differential photoinhibition of bacterial and archaeal ammonia oxidation, Fems Microbiol Lett, 327(1), 41-46.
Pai, S. C., G. C. Gong, and K. K. Liu (1993), Determination of Dissolved-Oxygen in Seawater by Direct Spectrophotometry of Total Iodine, Mar Chem, 41(4), 343-351.
Pai, S. C., Y. J. Tsau, and T. I. Yang (2001), pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Anal Chim Acta, 434(2), 209-216.
Priscu, J. C., M. T. Downes, and C. P. McKay (1996), Extreme supersaturation of nitrous oxide in a poorly ventilated Antarctic lake, Limnol Oceanogr, 41(7), 1544-1551.
Rabalais, N. N., R. E. Turner, and W. J. Wiseman (2002), Gulf of Mexico hypoxia, aka "The dead zone", Annu Rev Ecol Syst, 33, 235-263.
Riemann, B., J. A. Fuhrman, and F. Azam (1982), Bacterial Secondary Production in Fresh-Water Measured by Thymidine-H-3 Incorporation Method, Microb Ecol, 8(2), 101-113.
Romero, J. R., and J. Imberger (2003), Effect of a flood underflow on reservoir water quality: Data and three-dimensional modeling, Archiv Fur Hydrobiologie, 157(1), 1-25.
Sigman, D. M., K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bohlke (2001), A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal Chem, 73(17), 4145-4153.
Small, G. E., G. S. Bullerjahn, R. W. Sterner, B. F. N. Beall, S. Brovold, J. C. Finlay, R. M. L. McKay, and M. Mukherjee (2013), Rates and controls of nitrification in a large oligotrophic lake, Limnol Oceanogr, 58(1), 276-286.
Tseng, Y. F., et al. (2010), Typhoon effects on DOC dynamics in a phosphate-limited reservoir, Aquat Microb Ecol, 60(3), 247-260.
Ward, B. B. (2011), Measurement and Distribution of Nitrification Rates in the Oceans, Method Enzymol, 486, 307-323.
Yoshioka, T., M. Takahashi, and Y. Saijo (1985), Active nitrification in the hypolimnion of lake Kizaki in early summer. I: Nitrifying activity of rapidly sinking particles, Archiv für Hydrobiologie, 104(4), 557-570.

Chapter 4. Nitrification and its oxygen consumption and N2O production along the turbid Changjiang River plume
Anderson, I. C., and Levine, J. S.: Relative Rates of Nitric-Oxide and Nitrous-Oxide Production by Nitrifiers, Denitrifiers, and Nitrate Respirers, Applied and environmental microbiology, 51, 938-945, 1986.
Andersson, M. G. I., Brion, N., and Middelburg, J. J.: Comparison of nitrifier activity versus growth in the Scheldt estuary - a turbid, tidal estuary in northern Europe, Aquat Microb Ecol, 42, 149-158, 2006.
Bano, N., and Hollibaugh, J. T.: Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean, Applied and environmental microbiology, 66, 1960-1969, 2000.
Belser, L. W.: Population Ecology of Nitrifying Bacteria, Annu Rev Microbiol, 33, 309-333, 1979.
Berounsky, V. M., and Nixon, S. W.: Rates of Nitrification Along an Estuarine Gradient in Narragansett Bay, Estuaries, 16, 718-730, 1993.
Bianchi, M., Feliatra, and Lefevre, D.: Regulation of nitrification in the land-ocean contact area of the Rhone River plume (NW Mediterranean), Aquat Microb Ecol, 18, 301-312, 1999.
Brion, N., Billen, G., Guezennec, L., and Ficht, A.: Distribution of nitrifying activity in the Seine River (France) from Paris to the estuary, Estuaries, 23, 669-682, 2000.
Bronk, D. A., Lomas, M. W., Glibert, P. M., Schukert, K. J., and Sanderson, M. P.: Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods, Mar Chem, 69, 163-178, 2000.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal Chem, 74, 4905-4912, 2002.
Cebron, A., Berthe, T., and Garnier, J.: Nitrification and nitrifying bacteria in the lower Seine River and estuary (France), Applied and environmental microbiology, 69, 7091-7100, 2003.
Chai, C., Yu, Z. M., Shen, Z. L., Song, X. X., Cao, X. H., and Yao, Y.: Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam, Sci Total Environ, 407, 4687-4695, 2009.
Chen, Z., Li, J., Shen, H., and Wang, Z.: Changjiang of China: historical analysis of discharge variability and sediment flux, Geomorphology, 41, 77-91, 2001.
Chen, C. C., Shiah, F. K., Chiang, K. P., Gong, G. C., and Kemp, W. M.: Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea, J Geophys Res-Oceans, 114, 10.1029/2008JC004891, 2009.
Clement, J. C., Shrestha, J., Ehrenfeld, J. G., and Jaffe, P. R.: Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils, Soil Biol Biochem, 37, 2323-2328, 2005.
Cooper, A. B.: Activities of Benthic Nitrifiers in Streams and Their Role in Oxygen-Consumption, Microb Ecol, 10, 317-334, 1984.
Dai, M., Wang, L., Guo, X., Zhai, W., Li, Q., He, B., and Kao, S. J.: Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China, Biogeosciences, 5, 1227-1244, 2008.
Dai, Z. J., Du, J. Z., Zhang, X. L., Su, N., and Li, J. F.: Variation of Riverine Material Loads and Environmental Consequences on the Changjiang (Yangtze) Estuary in Recent Decades (1955-2008), Environ Sci Technol, 45, 223-227, 2011.
Elkins, James W., et al. Aquatic sources and sinks for nitrous oxide. Nature 275: 602-606, 1978.
Freitag, T. E., and Prosser, J. I.: Differences between betaproteobacterial ammonia-oxidizing communities in marine sediments and those in overlying water, Applied and environmental microbiology, 70, 3789-3793, 2004.
Fussel, J., Lam, P., Lavik, G., Jensen, M. M., Holtappels, M., Gunter, M., and Kuypers, M. M.: Nitrite oxidation in the Namibian oxygen minimum zone, Isme J, 6, 1200-1209, 2012.
Galand, P. E., Lovejoy, C., Pouliot, J., and Vincent, W. F.: Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem, J Marine Syst, 74, 774-782, 2008.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J.: Nitrogen cycles: past, present, and future, Biogeochemistry, 70, 153-226, 2004.
Garnier, J., Cebron, A., Tallec, G., Billen, G., Sebilo, M., and Martinez, A.: Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed, Biogeochemistry, 77, 305-326, 2006.
Gazeau, F., Gattuso, J. P., Middelburg, J. J., Brion, N., Schiettecatte, L. S., Frankignoulle, M., and Borges, A. V.: Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary), Estuaries, 28, 868-883, 2005.
Grundle, D. S., and Juniper, S. K.: Nitrification from the lower euphotic zone to the sub-oxic waters of a highly productive British Columbia fjord, Mar Chem, 126, 173-181, 2011.
Gunnarsson, J., Bjork, M., Gilek, M., Granberg, M., and Rosenberg, R.: Effects of eutrophication on contaminant cycling in marine benthic systems, Ambio, 29, 252-259, 2000.
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., Mcelroy, M. B., Valois, F. W., and Watson, S. W.: Production of NO2- and N2O by Nitrifying Bacteria at Reduced Concentrations of Oxygen, Applied and environmental microbiology, 40, 526-532, 1980.
Helder, W., and Devries, R. T. P.: Estuarine Nitrite Maxima and Nitrifying Bacteria (Ems-Dollard Estuary), Neth J Sea Res, 17, 1-18, 1983.
Hollibaugh, J. T., Bano, N., and Ducklow, H. W.: Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria, Applied and environmental microbiology, 68, 1478-1484, 2002.
Howarth, R. W., and Marino, R.: Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades, Limnol Oceanogr, 51, 364-376, 2006.
Hsu, S. C., Liu, S. C., Lin, C. Y., Hsu, R. T., Huang, Y. T., and Chen, Y. W.: Metal compositions of PM10 and PM2.5 aerosols in Taipei during spring, 2002, Terr Atmos Ocean Sci, 15, 925-948, 2004.
Hu, A. Y., Jiao, N. Z., and Zhang, C. L. L.: Community Structure and Function of Planktonic Crenarchaeota: Changes with Depth in the South China Sea, Microb Ecol, 62, 549-563, 2011.
Hu, X. P., and Cai, W. J.: An assessment of ocean margin anaerobic processes on oceanic alkalinity budget, Global Biogeochem Cy, 25, 2011.
Huertadiaz, M. A., and Morse, J. W.: A Quantitative Method for Determination of Trace-Metal Concentrations in Sedimentary Pyrite, Mar Chem, 29, 119-144, 1990.
Hulth, S., Aller, R. C., and Gilbert, F.: Coupled anoxic nitrification manganese reduction in marine sediments, Geochim Cosmochim Ac, 63, 49-66, 1999.
Kao, S. J., Horng, C. S., Roberts, A. P., and Liu, K. K.: Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation, Chem Geol, 203, 153-168, 2004.
Kao, S. J., Yang, J. Y. T., Liu, K. K., Dai, M. H., Chou, W. C., Lin, H. L., and Ren, H. J.: Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea, Global Biogeochem Cy, 26, 2012.
Knapp, A. N., Sigman, D. M., Lipschultz, F., Kustka, A. B., and Capone, D. G.: Interbasin isotopic correspondence between upper-ocean bulk DON and subsurface nitrate and its implications for marine nitrogen cycling, Global Biogeochem Cy, 25, 2011.
Lara-Lara, J. R., Frey, B. E., and Small, L. F.: Primary Production in the Columbia River Estuary I. Spatial and Temporal Variability of Properties!, Pacific Science, 44, 17-37, 1990.
Lipschultz, F., Wofsy, S. C., and Fox, L. E.: Nitrogen-Metabolism of the Eutrophic Delaware River Ecosystem, Limnol Oceanogr, 31, 701-716, 1986.
Luther, G. W., Sundby, B., Lewis, B. L., Brendel, P. J., and Silverberg, N.: Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen, Geochim Cosmochim Ac, 61, 4043-4052, 1997.
Luther, G. W., and Popp, J. I.: Kinetics of the abiotic reduction of polymeric manganese dioxide by nitrite: An anaerobic nitrification reaction, Aquat Geochem, 8, 15-36, 2002.
Mackey, K. R. M., Bristow, L., Parks, D. R., Altabet, M. A., Post, A. F., and Paytan, A.: The influence of light on nitrogen cycling and the primary nitrite maximum in a seasonally stratified sea, Prog Oceanogr, 91, 545-560, 2011.
Merbt, S. N., Stahl, D. A., Casamayor, E. O., Marti, E., Nicol, G. W., and Prosser, J. I.: Differential photoinhibition of bacterial and archaeal ammonia oxidation, Fems Microbiol Lett, 327, 41-46, 2012.
Milliman, J. D., and Syvitski, J. P. M.: Geomorphic Tectonic Control of Sediment Discharge to the Ocean - the Importance of Small Mountainous Rivers, J Geol, 100, 525-544, 1992.
Ning, X., Lin, C., Su, J., Liu, C., Hao, Q., and Le, F.: Long-term changes of dissolved oxygen, hypoxia, and the responses of the ecosystems in the East China Sea from 1975 to 1995, J Oceanogr, 67, 59-75, 2011.
Off, S., Alawi, M., and Spieck, E.: Enrichment and Physiological Characterization of a Novel Nitrospira-Like Bacterium Obtained from a Marine Sponge, Applied and environmental microbiology, 76, 4640-4646, 2010.
O′Mullan, G. D., and Ward, B. B.: Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California, Applied and environmental microbiology, 71, 697-705, 2005.
Owens, N. J. P.: Estuarine Nitrification - a Naturally-Occurring Fluidized-Bed Reaction, Estuar Coast Shelf S, 22, 31-44, 1986.
Pai, S. C., Tsau, Y. J., and Yang, T. I.: pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Anal Chim Acta, 434, 209-216, 2001.
Pakulski, J. D., Benner, R., Amon, R., Eadie, B., and Whitledge, T.: Community Metabolism and Nutrient Cycling in the Mississippi River Plume - Evidence for Intense Nitrification at Intermediate Salinities, Mar Ecol-Prog Ser, 117, 207-218, 1995.
Phillips, C. J., Smith, Z., Embley, T. M., and Prosser, J. I.: Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the northwestern Mediterranean Sea, Applied and environmental microbiology, 65, 779-786, 1999.
Rabalais, N. N., Turner, R. E., and Wiseman, W. J.: Gulf of Mexico hypoxia, aka "The dead zone", Annu Rev Ecol Syst, 33, 235-263, 2002.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123-125, 2009.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The Influence of Organism on the Composition of Sea Water, in: The sea, edited by: Hill, M. N., Wiley-Interscience, New York, 26-77, 1963.
Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B., and Sloth, N. P.: Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments, Estuaries, 22, 21-30, 1999.
Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea, Science, 333, 1282-1285, 2011.
Santoro, A. E., Sakamoto, C. M., Smith, J. M., Plant, J. N., Gehman, A. L., Worden, A. Z., Johnson, K. S., Francis, C. A., and Casciotti, K. L.: Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, Biogeosciences, 10, 7395-7410, 2013.
Seitzinger, S. P., Nixon, S. W., and Pilson, M. E. Q.: Denitrification and Nitrous-Oxide Production in a Coastal Marine Ecosystem, Limnol Oceanogr, 29, 73-83, 1984.
Seitzinger, S. P.: Nitrogen Biogeochemistry in an Unpolluted Estuary - the Importance of Benthic Denitrification, Mar Ecol-Prog Ser, 41, 177-186, 1987.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Bohlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal Chem, 73, 4145-4153, 2001.
Smith, V. H., Joye, S. B., and Howarth, R. W.: Eutrophication of freshwater and marine ecosystems, Limnol Oceanogr, 51, 351-355, 2006.
Somville, M.: Use of nitrifying activity measurements for describing the effect of salinity on nitrification in the Scheldt Estuary, Appl. Environ. Microb., 47, 424-426, 1984.
Syvitski, J. P. M., Vorosmarty, C. J., Kettner, A. J., and Green, P.: Impact of humans on the flux of terrestrial sediment to the global coastal ocean, Science, 308, 376-380, 2005.
Tseng, Y.-F., Lin, J., Dai, M., and Kao, S.-J.: Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River, Biogeosciences, 11, 409-423, 2014.
Vandenabeele, J., Vandewoestyne, M., Houwen, F., Germonpre, R., Vandesande, D., and Verstraete, W.: Role of Autotrophic Nitrifiers in Biological Manganese Removal from Groundwater Containing Manganese and Ammonium, Microb Ecol, 29, 83-98, 1995.
Wang, B. D.: Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary, Mar Environ Res, 67, 53-58, 2009.
Wang, H. Y., Shen, Z. Y., Guo, X. J., Niu, J. F., and Kang, B.: Ammonia adsorption and nitritation in sediments derived from the Three Gorges Reservoir, China, Environ Earth Sci, 60, 1653-1660, 2010.
Wang, B. D., Wei, Q. S., Chen, J. F., and Xie, L. P.: Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary, Mar Environ Res, 77, 1-5, 2012.
Wei, H., He, Y. C., Li, Q. J., Liu, Z. Y., and Wang, H. T.: Summer hypoxia adjacent to the Changjiang Estuary, J Marine Syst, 67, 292-303, 2007.
Woebken, D., Fuchs, B. M., Kuypers, M. M. M., and Amann, R.: Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system, Applied and environmental microbiology, 73, 4648-4657, 2007.
Wuchter, C., Abbas, B., Coolen, M. J. L., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., and Damste, J. S. S.: Archaeal nitrification in the ocean, P Natl Acad Sci USA, 103, 12317-12322, 2006.
Xia, X. H., Yang, Z. F., and Zhang, X. Q.: Effect of Suspended-Sediment Concentration on Nitrification in River Water: Importance of Suspended Sediment-Water Interface, Environ Sci Technol, 43, 3681-3687, 2009.
Yoon, W. B., and Benner, R.: Denitrification and Oxygen-Consumption in Sediments of 2 South Texas Estuaries, Mar Ecol-Prog Ser, 90, 157-167, 1992.
Zhou, F., Xuan, J. L., Ni, X. B., and Huang, D. J.: A preliminary study of variations of the Changjiang Diluted Water between August of 1999 and 2006, Acta Oceanol Sin, 28, 1-11, 2009.
Zhu, Z. Y., Zhang, J., Wu, Y., Zhang, Y. Y., Lin, J., and Liu, S. M.: Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition, Mar Chem, 125, 108-116, 2011.

Chapter 5. Conclusion
Liu, S. C., Fu, C. B., Shiu, C. J., Chen, J. P., and Wu, F. T.: Temperature dependence of global precipitation extremes, Geophys Res Lett, 36, 2009.
Merbt, S. N., Stahl, D. A., Casamayor, E. O., Marti, E., Nicol, G. W., and Prosser, J. I.: Differential photoinhibition of bacterial and archaeal ammonia oxidation, Fems Microbiol Lett, 327, 41-46, 2012.
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T.: Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective, Sediment Geol, 162, 5-24, 2003.
Walling, D. E., and Fang, D.: Recent trends in the suspended sediment loads of the world′s rivers, Global Planet Change, 39, 111-126, 2003.
指導教授 高樹基、劉康克
(Shuh-Ji Kao、Kon-Kee Liu)
審核日期 2014-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明