博碩士論文 990202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.239.167.74
姓名 程姿諭(Tzu-yu Cheng)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 四元素分解模型於全偏極雷達散射特徵應用與分析
(Applications and analysis of full polarimetric SAR scattering characteristic based on four component decomposition model)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ 全球衛星定位系統(GPS)接收器RF module設計與製作★ 全球衛星定位系統(GPS)接收器 基頻電路與天線之設計製作
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 微波散射理論於地表散射之研究
★ 一個新穎的方法來實現高光譜遙測影像分類★ 5.3GHz 昇頻器與降頻器設計與製作
★ 5.3GHz室內電波傳播特性量測與分析★ 地面遙測影像雷達及數位信號處理之設計
★ 5.3GHz射頻放大器模組之設計與製作★ 5.3GHz無線網路收發機之基頻電路設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全偏極合成孔徑雷達( Fully Polarimetric Synthetic Aperture Radar, POLSAR)具全偏極特性,應用發展不同於單一波段合成孔徑雷達系統。其特色於相同目標物採用不同極化方式發射接收,因目標物結構特徵差異具有不同散射特徵。全偏極合成孔徑雷達特徵包含散射矩陣(Scattering Matrix)中除了線性偏極特徵外,尚包含偏極間交互作用項。以全偏極雷達特徵作為分類資訊相較於已往以部分偏極特徵為分類資訊,其在優勢於保有更完整之地物散射特性。因此利用全偏極合成孔徑雷達影像進行地表觀測,有利於完整的目標分析。
本文討論四元素分解模型(Four-Component Decomposition Model)於全偏極影像資料並討論應用於不同目標物之影像結果。四元素分解模型為共變異矩陣(covariance matrix)或同調矩陣(coherence matrix.)中所分解出表面散射(single bounce scattering)、二次散射(double bounce scattering)、體散射(volume scattering)與螺旋散射(helix scattering)所組成。四元素分解模型應用於全偏極合成孔徑雷達影像有兩個問題需提出討論。一是要消除在建物區雷達照射方位的影響,同調矩陣分解前必須先修正方位。方位角經由最小化交叉極化項或從圓極化基底的相關係數相位推得。其中假設隨機偶極(randomly dipoles)的體散射模型,十分難以物理散射介質佐證。與其模型定義與資料並不匹配。二是在分解模型過程中會產生負功率問題。旋轉方位角後,降低在表面散射與二次散射產生負功率的狀況,但無法完全修正。
本研究致力於應用此模型基於分解後的散射組成空間特徵向量變遷偵測。此組成由實際量測到的二階散射矩陣經由四元素分解模型經由統計特徵而獲得。並以分解模型為基礎,探討提升全偏極影像在地物散射特徵應用與變遷偵測能力。
測試方面,資料為鰲鼓六幅不同時期RADARSAT-2全偏極合成孔徑雷達資料。針對稻作與沿岸沙洲進行四元素分解模型的應用與分析。透過全偏極合成孔徑雷達影像,應用於不同地表特性的多時序觀測,針對特定目標物(稻作、沙洲)個別討論。
稻作部分,透過四元素法分解模型計算各個頻段背向散射係數值。配合當日實際地面調查拍攝稻作生長資料。影像中顯示,稻作依據不同生長週期具不同變遷特徵且符合稻作生長週期所表現出特性。藉此可利用衛星影像監測稻作生長情形。沙洲部分,由於西海岸線潮位變化幅度大,不同海面高度觀測到沙洲及沿岸蚵架所呈現的反應也不同。低潮位時,蚵架露出海面與雷達飛行方向正交,呈現二次反射的特徵。另外也可藉由體散射項觀測浪前緣的變化。高潮位時,沙洲幾乎被淹沒,海浪遇上較高地形而產生較大的擾動,使得海水淹沒的沙洲呈現體散射特徵。
配合現地調查資料,四元素分解模型影像與現地資料調查結果相符合一致。較以往傳統分解方法,更具正確分辨率。未來應用於農業植被生長觀測或國土海岸線的監測都十分地有效益。
摘要(英) A four‐component scattering model, being identified by single bounce, double bounce, volume, and helix scattering power contributions, was proposed by Yamaguchi to decompose fully polarimetric synthetic aperture radar (SAR) images based on covariance matrix and coherence matrix- the later bears better quantitative interpretation of SAR data and easier computation. To remove the effects of orientation in urban buildings with radar illumination, the coherence matrix is de‐orientated before decomposition. The orientation angle may be derived by minimizing the cross‐polarized term or derived from the phase of the correlation coefficient in the circular polarization basis. Among by Lee propose volume scattering is modeled with randomly oriented dipoles, it is difficult to prove if these basic scattering models fit the physical scattering media. The models definitely fail to match the data. An attempt has been made to incorporate the X-Bragg model modify the scattering model. The proposed algorithm will significantly reduce the number of negative pixels.
This study is devoted to applying these model based decomposed scattering components as spatial feature vector to change detection. These components can be viewed as second order statistics like texture measures from the fact that these four components are derived from second‐order statistics of scattering matrix. Fully polarimetric SAR data from series Radarsat‐2 were acquired over western Taiwan coast. Change detection was then carried out by a simple threshold of the cumulative histogram of the difference feature vector according to a predefined constant false alarm rate (CFAR) value. Results indicate that the excruciating mis‐registration error was capably taken into account and removed without affecting the excellent detection performance.
關鍵字(中) ★ 全偏極
★ 四元素分解模型
★ 合成孔徑雷達
關鍵字(英) ★ POLSAR) Synthetic
★ POLSAR) Synthetic Aperture Radar
★ POLSAR)Synthetic Aperture Radar
★ Polarimetric(Polarimetric (Polarimetric(Polarime
★ polarimetric
★ Four Component Decomposition
★ POLSAR)Synthetic Aperture Radar
★ POLSAR) Synthetic Aperture Radar
★ POLSAR)Syntheti
論文目次 第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.3 內容簡介 4
第二章 全偏極合成孔徑雷達 5
2.1 全偏極合成孔徑雷達基本原理 5
2.2 全偏極合成孔徑雷達資料特性 8
2.2.1 散射矩陣 8
2.2.2 共變異矩陣 9
2.2.3 同調矩陣 9
第三章 目標散射模型分解原理 12
3.1 山口四元素法分解模型理論 12
3.1.1 散射矩陣旋轉 13
3.1.2 表面散射模型 14
3.1.3 二次散射模型 15
3.1.4 體散射模型 16
3.1.5 螺旋散射模型 18
3.2 佐藤四元素法分解模型 20
3.2.2 極化特徵說明 20
3.2.3 角反射器的機率密度分布函數 21
3.3 四元素法分解模型特性討論 23
3.3.1 旋轉角 23
3.3.2 負功率的產生 26
第四章 目標散射模型分解應用分析 27
4.1 實驗地區介紹 27
4.2 稻作區生長週期觀測 28
4.3 沙洲、蚵架環境觀測 33
第五章 結論與未來展望 38
5.1 結論 38
5.2 未來展望 39
參考文獻 41
參考文獻 [1] F. T. Ulaby, C. Elachi, Radar Polarimetry for Geoscience Applications, Artech House, 1990.
[2] 山口芳雄,"レ―ダポ―ラリメトリの基礎と応用,"2011。
[3] A. K. Fung and Kun-Shan Chen, Microwave Scattering and Emission Models for Users, Artech House, Norwood, MA, 2010.
[4] A. Freeman and S. L. Durden, “A Three-Component Scattering Model for Polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 36, no.3, pp.963–973, 1998.
[5] J. S. Lee and E. Pottier, Polarimetric Radar Imageing from Basics to Applications,” CRC Press, 2009.
[6] S. R. Cloude and E. Pottier, “A review of target decomposition theorems in radar polarimetry,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 498-518, 1996.
[7] S. R. Cloude and E. Pottier, “An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR,” IEEE Trans. Geosci. Remote Sens., vol. 35, no.1, pp. 68-78, 1997.
[8] Y. Yamaguchi, T. Moriyama, M. Ishido and H. Yamada, “Four Component Scattering Model for Polarimetric SAR Image Decomposition,”IEEE Trans. Geosci. Remote Sens., vol. 43, no.8, pp. 1699 – 1706, 2005.
[9] Y. Yamaguchi, Y. Yajima, and H. Yamada, “A Four-Component Decomposition of POLSAR Images based on The Coherency Matrix,” IEEE Geosci. Remote Sens. Lett., vol. 3, no.3, pp. 292–296, 2006.
[10] Y. Yajima, Y. Yamaguchi, R. Sato, H. Yamada, and W. M. Boerner,“POLSAR Image Analysis of Wetlands using a Modified Four-Component Scattering Power Decomposition,” IEEE Trans. Geosci. Remote Sens., vol.46, no. 6, pp. 1667-1673, 2008.
[11] Y. Yamaguchi, A. Sato, R. Sato, H. Yamada, W. M. Boerner, “Four‐component Scattering Power Decomposition with Rotation of Coherency Matrix,” Proc. IGARSS, 2010, pp. 1327-1330.
[12] A. Sato, Y. Yamaguchi, G. Singh, S. E. Park, “Four-Component Scattering Power Decomposition With Extended Volume Scattering Model ,” IEEE Trans. Geosci Remote Sens., vol. 9, no. 2, pp. 166-170, 2012.
[13] J. S. Lee, D. L. Schuler, T. L. Ainsworth, E. Krogager, D. Kasilingam, W. M. Boerner, “On The Estimation of Radar Polarization Orientation Shifts Induced by Terrain Slopes,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 1, pp. 30‐41, 2002.
[14] J. S. Lee, and T. L. Ainsworth, “The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp.53‐64, 2011.
[15] J. S. Lee, T. L. Ainsworth, and Y. Wang, “Recent Advances in Scattering Model-based Decompositions an Overview,” Proc. IGARSS, 2011, pp. 9-12.
[16] K. S. Chen, A. K. Fung, J. C. Shi, and H. W. Lee, “Intepretation of backscattering mechanisms from non-Gaussian correlated randomly rough surface.” Journal of Electromagnetic Waves and Applications, vol. 16, no.5, pp. 689-702, 2002.
[17] F. Wu, C. Wang, H. Zhang, B. Zhang, and Y. Tang, “Rice Crop Monitoring in South China With RADARSAT-2 Quad-Polarization SAR Data.” IEEE Trans. Geosci. Remote Sens., vol. 8, no. 2, pp. 196‐200, 2011.
[18] 王邦達,全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究,國立中央大學太空科學研究所碩士論文,2004。
[19] 許裕閔,CFAR雷達偵測之參數變化,國立高雄第一科技大學電腦與通訊工程系,2003。
[20] A. K. Fung, Q. Li and K. S. Chen, “Backscattering from a randomly rough dielectric surface,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 2, pp. 356-369, 1992.
[21] A. K. Fung, W. Y. Liu, K. S. Chen, and M. K. Tsay, “An improved IEM model for bistatic scattering, ” Journal of Electromagnetic Waves and Applications, vol. 20, no.1, pp. 105-118, 2006.
[22] A. K. Fung and K. S. Chen, “An update on IEM surface backscattering model,” IEEE Trans. Geosci. Remote Sens Lett, vol.1, no.2, pp. 75-77, 2004.
[23] T. D. Wu and K. S. Chen “A Reappraisal of the Validity of the IEM Model for Backscattering from Rough Surfaces,” IEEE Trans. Geosci. Remote Sens., vol.42, no.8, pp. 743-753, 2004.
[24] T. D. Wu, K.S. Chen, J. C. Shi, and A. K. Fung, “A transition model for the reflection coefficient in surface scattering, ” IEEE Trans. Geosci. Remote Sens., vol.39, no.9, pp. 2040-2050, 2001.
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2012-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明