博碩士論文 992201001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.211.135.32
姓名 程郁芬(Yu-Fen Cheng)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多科學與工程上應用需要準確、快速、穩定和可拓展大型稀疏多項式特徵值問題(PEVPs)的數值解對於離散化的偏微分方程。根據數值結果顯示多項式Jacobi-Davidson演算法能夠有效率地對內部特徵值問題求解,因而被廣泛使用。多項式Jacobi-Davidson演算法是一個子空間法(subspace method),從搜尋空間內提取合適的估計eigenpair並且透過解一個線性系統correction equation在JD的迭代去增加一個基底向量到search space。在本研究當中,我們提出一個新的two-level多項式JD演算法架構在additive Schwarz來解三次多項式特徵值對於噪音工程的應用問題。首先,我們建造搜尋空間利用粗網格之解為細網格的初始基底。另一方面,我們使用一個低成本並且有效率的preconditioner定義在粗網格的restricted additive Schwarz解線性系統correction equation,對於大型問題此方法在多重處理器的平行計算中扮演著重要角色。最後,經由數值結果得到論證,此演算法在平行叢集電腦具有穩健性和延展性。
摘要(英) Many scientific and engineering applications require accurate, fast, robust, and scalable numerical solution of large sparse algebraic polynomial eigenvalue problems (PEVPs) arising from some appropriate discretization of partial differential equations. The polynomial Jacobi-Davidson (PJD) algorithm has been numerically shown as a promising approach for the PEVPs and has gained its popularity for finding their interior spectrum of the PEVPs. The PJD algorithm is a subspace method, which extracts the candidate approximate eigenpair from a search space and the space undated by embedding the solution of the correction equation at the JD iteration. In this research, we propose the two-level PJD algorithm for PEVPs with emphasis on the application of the dissipative acoustic cubic eigenvalue problem. The proposed two-level PJD algorithm is based on the Schwarz framework. The initial basis for the search space is constructed on the current level by using the solution of the same eigenvalue problem, but defined on the previous coarser grid. On the other hand, a low-cost and efficient preconditioner based on Schwarz framework, coarse restricted additive Schwarz (RAS_c) preconditioner for the correction equation, which plays a crucial role in parallel computing for large-scale problems by using a large number of processors. Some numerical examples obtained on a parallel cluster of computers are given to demonstrate the robustness and scalability of our PJD algorithm.
關鍵字(中) ★ 阻尼
★ 平行計算
★ 有限元素法
★ 多項式特徵值問題
★ 聲波
關鍵字(英) ★ acoustic
★ polynomial eigenvalue problem
★ finite element method
★ Jacobi-Davidson method
★ additive Schwarz preconditioner
★ parallel computing
★ initial search space
★ precondition
★ damping
論文目次 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Polynomial acoustic eigenvalue problems . . . . . . . . . . . . . . . . . . . 4
2.1 Dissipative acoustic eigenvalue problem . . . . . . . . . . . . . . . . . . . . 4
2.2 Galerkin nite element discretization . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Algebraic polynomial eigenvalue problems . . . . . . . . . . . . . . . . . . . 7
3 Two-level polynomial Jacobi-Davidson algorithm . . . . . . . . . . . . . . 10
3.1 One-level Jacobi-Davidson algorithm . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Two-level Jacobi-Davidson algorithm . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Two-level approach for constructing initial search space algorithm . 13
3.2.2 One-level coarse restricted additive Schwarz precondition algorithm 14
4 Numerical results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Problems statement and setup for numerical experiments . . . . . . . . . . 16
4.2 Two-level approach for initial search space construction . . . . . . . . . . . 19
4.3 Two-level ASPJD algorithmic parameter tuning . . . . . . . . . . . . . . . . 24
4.3.1 Coarse grid solution quality . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Coarse grid size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 Subdomain solution quality for RAS c coarse grid . . . . . . . . . . 27
4.3.4 Correction equation solver types and iterations . . . . . . . . . . . . 28
4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A. Bilinear basis and the local sti ness and mass matrices . . . . . . . . . . . . 38
B. Analytical Solution for various boundary conditions . . . . . . . . . . . . . . 43
a. All Neumann boundary conditions . . . . . . . . . . . . . . . . . . . . . 43
b. All Dirichlet boundary conditions . . . . . . . . . . . . . . . . . . . . . . 45
c. Dirichlet (left), Neumann (others) boundary condition . . . . . . . . . . 50
d. Dirichlet (left), Robin (right), Neumann (others) boundary conditions . 52
C. NaN problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D. Improve Ritz-value selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻 [1] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, . C. McInnes, B. F. Smith, and H. Zhang. PETSc webpage, 2010. http://www.mcs.anl.gov/petsc.
[2] K.-W. Eric Chu, T.-M. Hwang, W.-W. Lin, and C.-T.Wu. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J. Comput. Appl. Math., 219(1):237-252, 2008.
[3] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. SLEPc webpage, 2010. http://www.grycap.upv.es/slepc.
[4] C-.Y. Huang and F-.N. Hwang. Parallel pseudo-transient Newton-Krylov-Schwarz continuation algorithms for bifurcation analysis of incompressible sudden expansion flows. Appl. Numer. Math., 60:738-751, 2010.
[5] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, and Z.-H. Wei. A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems. Comput. & Fluids, 2011.
[6] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000.
[7] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, F. Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. 2008.
[8] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43:235-286, 2001.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明