博碩士論文 992201003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.229.90
姓名 卜安怡(An-yi Bu)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Conformality of Planar Parameterization for Single Boundary Triangulated Surface Mesh)
相關論文
★ 薛丁格方程式上直立波解的分類。★ 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討
★ 關於漢米爾頓矩陣的某些平滑性分解★ 在N維實數域之雙調和微分方程
★ 一維動態系統其週期解之研究★ 一些延滯方程其週期解之探討
★ On the Blow-up solutions of Biharmonic Equation on a ball★ 雙調和微分方程其正整域解的存在性與不存在性之探討
★ 高階橢圓偏微分方程解的存在性及其行為之研究★ 有絲分裂中染色體運動之動態分析
★ 非線性橢圓方程及系統中解的唯一性和結構性之探討★ On the Positive Solution for Grad-Shafranov Equation
★ 關於三物種間之高流動性Lotka-Vollterra競爭擴散系統的波形極限行為★ 非線性橢圓型偏微分方程系統之解結構分析
★ On the study of the Golden-Thompson inequality★ 探討源自於隨機最佳化控制問題之偏微分方程與其相關應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 曲面參數化是將曲面映射至一個平面:給定任兩個拓樸等價的曲面,我們可以在這兩個曲面之間,找到一對一且映成的對應關係。如果將曲面以三角網格離散化,則計算此兩曲面間對應關係的問題稱為網格參數化 (mesh parameterization),曲面所對應的二維平面被稱作參數值域 (parameter domain)。參數化的方法可分為固定邊界 (fixed boundary) 及自由邊界 (free boundary) 兩種,而此兩種方法都可再細分為線性與非線性方法。一般來說,固定邊界源自於物理中的彈簧模型:給定一個二維平面上的區域,將三維曲面的邊界固定在指定區域的邊界上,接著將曲面內部的邊視為彈簧,透過不同彈力係數的選取,可得到不同參數化結果。此篇論文計算了以下六種不同的 weight:Uniform weight, Chord Length weight, Wachspress weight, Harmonic weight, Mean Value weight, Semi-Cotangent weight。而非線性的部分,我們實作了理論上保角的 Riemann Mapping。自由邊界主要採用最小化目標函數 (objective function) 的能量,目前常見的方法有:Least Square Confomral Maps (LSCM) 以及 Linear Angle-Based Flattening (LABF)。在這篇論文中,我們對單一邊界的網格作不同的參數化,並比較各種不同方法的保角性。由於好的參數化是希望最小化角度形變量 (angle distortion),也就是做到保角的參數化 (conformal parameterization )。在我們的實驗數據中,Riemann Mapping 的保角性及效能是相當好的,對面數在30至90K的模型大都能在1分鐘內作完,除驗證保角性與理論相符,也應證了保角性與網格間的關係。
摘要(英) Surface parameterization is the process of mapping a surface to a planar region. Given any two surfaces with similar topology, it is possible to compute a one-to-one and onto mapping between them. If one of these surfaces is represented by a triangular mesh, the problem of computing such a mapping is referred to as mesh parameterization. The surface that the mesh is mapped to is typically referred to as the parameter domain. The parameterization methods can be roughly classified into fixed boundary methods and free boundary methods. In general, fixed boundary methods are based on the spring model. According to the different choice of weight, results may vary from method to method. In this paper, we parameterize the single boundary meshes with six linear methods by choosing different weight and the non-linear Riemann mapping method. Then we compare the conformality of different methods. Theoretically, the Riemann mapping is an angle-preserving method. On the other hand, the free boundary methods is always consid- ered to minimize energy of the objective function. In our numerical results, Riemann mapping method reaches high efficiency and good conformality. For larger models with 90,000 number of areas, parameterization can be finished within one minute. When several methods address the same parameterization problem, this paper strives to provide an objective comparison between them based on criteria such as parameterization quality, efficiency and robustness.
關鍵字(中) ★ 保角性
★ 平面參數化
★ 單一邊界網格
★ 黎曼映射
關鍵字(英) ★ conformality
★ planar parameterization
★ single boundary mesh
★ riemann mapping
論文目次 Tables ix
Figures xi
1 Introduction 1
1.1 Background 1
1.2 Overview 3
2 Fixed Boundary Methods 4
2.1 The Barycentric Mappings 5
2.2 Riemann mapping 6
3 Free Boundary Methods 7
3.1 Least Square Conformal Maps Method 7
3.2 Linear Angle-based Flattening Method 9
4 Measurements of Conformality 11
4.1 Conformality 12
4.2 L2 shear 14
4.3 Squared Sum of Angle Differences 15
5 Numerical Results 15
5.1 Mesh Preparation 15
5.2 Discussion 38
6 Conclusions 39
參考文獻 [1] P. Alliez, M.Meyer, and M. Desbrun. Interactive geometry remeshing. Comput. Graphics (Proc. SIGGRAPH 02), pages 347–354, 2002.
[2] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. Conformal geometry and brain flattening. Proc. MICCAI, pages 271–278, 1999.
[3] X. David and S.-T. Tau. Computational Conformal Geometry. International Press of Boston, 2008.
[4] M. Desbrun, M.Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes. Com- puter Graphics Forum, Proc. Eurographics’02, (3):209–218, 2002.
[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolu- tion analysis of arbitrary meshes. Proc. ACM SIGGRAPH ’95, pages 173–182, 1995.
[6] M.-S. Floaster. Parameterization and smooth approximation of surface triangulations. Computer Aided Geometric Design, pages 231–250, 1997.
[7] M.-S. Floater. Mean value coordinates. COMPUTER AIDED GEOMETRIC DESIGN, 2002.
[8] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus zero surface con- formal mapping and its application to brain surface mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING, (8), 2004.
[9] X. Gu and S.-T. Yau. Computing conformal structure of surfaces. Communication of Informtion and Systems, 2002.
[10] X. Gu and S.-T Yau. Multiresolution analysis of arbitrary meshes. Communication of Informtion and Systems, 2002.
[11] X. Gu and S.-T. Yau. Global conformal surface parameterization. Proc. ACM Symp. Geometry Processing, pages 127–137, 2003.
[12] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Trans. Visual. Comput. Graphics, pages 181–189, 2000.
[13] K. Hormann and G. Greiner. Mips: An efficient global parameterization method. Curve and Surface Design: Saint-Malo, 1999.
[14] M. Hurdal, P. Bowers, K. Stephenson, D. Sumners, K. Rehm, K. Schaper, and D. Rotten- berg. Quasiconformally flat mapping the human cerebellum. Proc. MICCAI’99, 1999.
[15] M.Hurdal,K.Stephenson,P.Bowers,D.Sumners,andD.Rottenberg.Coordinatesystems for conformal cerebellar flat maps. NeuroImage, 2000.
[16] T. Kanai, H. Suzuki, and F. Kimura. Three-dimensional geometric metamorphosis based on harmonic maps. Visual Comput, (4):166–176, 1998.
40
[17] B. Le ́vy, S. Petitjen, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. Proc. ACM SIGGRAPH ’02, pages 362–371, 2002.
[18] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Exp. Math., (1):15–36, 1993.
[19] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe. Texture mapping progressive meshes. Proc. ACM SIGGRAPH ’01, pages 409–416, 2001.
[20] R. Schoen and S.-T. Yau. Lectures on harmonic maps. Cambridge, MA: Harvard Univ., Int. Press, 1997.
[21] A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing using angle based flattening. Eng. Computers, (3):326–337, 2001.
[22] A. Sheffer, B. Le ́vy, M. Mogilnitsky, and A. Bogomyakov. ABF++: Fast and robust angle based flattening. ACM Trans. Graphics, (2):311–330, 2005.
[23] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their applications. Proc. ACM SIGGRAPH ’01, pages 179–184, 2001.
[24] W.-T. Tutte. How to draw a graph. London Mathematical Society, pages 743–768, 1963.
[25] E.-L. Wachspress. A rational finited element basis. Academic Press, New York, 1975.
[26] M.-Q. Wei, M.-Y. Pang, and C.-L. Fan. Survey on planar parameterization of triangular meshes. International Conference on Measuring Technology and Mechatronics Automa- tion, 2010.
[27] R. Zayer, B. Le ́vy, and H.-P. Seidel. Linear angle based parameterization. Proc. Fifth Eurographics Symp. Geometry Processing (SGP ’07), pages 349–360, 2007.
[28] R. Zayer, C. Ro ̈ssl, and H.-P. Seidel. Variations of angle based flattening. Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 187–199, 2005.
指導教授 陳建隆(Jann-long Chern) 審核日期 2013-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明