博碩士論文 992201007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.174.43.27
姓名 謝承恩(Chen-en Hsieh)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模擬血液在血管裡的行為有助於醫療人員或研究學者對血管疾病掌握更多資訊,並降低手術時的風險。在這篇論文中,我們使用Power-law, Bingham, Carreau-Yasuda 模型來模擬非牛頓流體在二維的幾何圖形Backward-facing step、Four-to-One Contraction、Rotational eccentric annulus flow,與三維的幾何圖形A long straight artery、An end-to-side graft,以及針對個別病患所造出多分支的血管上流體的行為。在離散化方面,對空間上的離散是使用stabilized finite element method,而時間上的離散則是使用implicit backward Euler finite difference method,在每個time step 是用Newton-Krylov-Schwarz algorithm 來解這樣一個非線性系統。而為了幫助我們模擬更複雜的幾何形狀與加快其計算的時間,採用 Two-level methods。最後,我們還計算的壁上的剪應力,以便於醫學上的應用。
摘要(英) The simulation of the behavior of the blood in the arteries help medical personnel or researchers to acquire more information on vascular disease and reduce the risk of surgery. In this paper, we use the Power-law, Bingham, Carreau-Yasuda model to simulate non-Newtonian fluid in a two-dimensional geometry of Backward-facing step, Four-to-One Contraction, Rotational eccentric annulus flow, and three-dimensional geometry of A long Straight ARTERY, an end-to-side Graft, as well as for the individual patient create multiple branching vascular fluid behavior. In the discretization, where a stabilized finite element method is used for the spatial discretization, while an implicit backward Euler finite difference method for the temporal discretization. At each time step, the resulting system solved by the Newton-Krylov-Schwarz algorithm. In order to help us to simulate more complex geometry and speed up the calculation time, Two-level methods.Finally, we also calculated the wall of the shear stress, so that medical applications.
關鍵字(中) ★ 流體力學
★ 血流
★ 非牛頓流體
關鍵字(英)
論文目次 Tables ix
Figures xiii
1 Introduction 1
2 Mathematical models for fluids in arteries 4
2.1 Nondimensionalization 6
2.2 Maximum shear stress 7
3 Parallel solution algorithm 10
3.1 Spatial and temporal discretizations 10
3.2 Newton-Krylov-Schwarz algorithm 12
3.2.1 One-level additive Schwarz preconditioners 13
3.2.2 Two-level methods with a parallel coarse preconditioner 14
3.3 Parallel software development 15
4 2D numerical results 18
4.1 Test case 18
4.1.1 Backward-facing step 18
4.1.2 Four-to-One Contraction 19
4.1.3 Rotational eccentric annulus flow 21
4.2 Grid tests 23
4.3 Parametric tuning 32
5 3D numerical results with blood flow applications 57
5.1 Test case 57
5.1.1 A long straight artery model 57
5.1.2 An end-to-side graft model 58
5.2 Grid tests 60
5.3 Parametric tuning 67
5.4 NKS algorithm parameter tuning and parallel performance study 71
5.5 Parallel performance study 78
5.6 Patient-specific in pulsatile branch artery 80
6 Conclusion and future works 84
參考文獻 [1] C.A. Taylor, T.J.R. Hughes, and C.K. Zarins. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158(1-2):155–196, 1998.
[2] F. Loth, S.A. Jones, D.P. Giddens, H.S. Bassiouny, S. Glagov, and C.K. Zarins. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. Journal of Biomechanical Engineering, 119:187, 1997.
[3] M. Lei, D.P. Giddens, F. Jones, S.A .and Loth, and H. Bassiouny. Pulsatile flow in an
End-to-Side Vascular Graft Model: Comparison of computations with experimental
data. Journal of Biomechanical Engineering, 123:80, 2001.
[4] M.R.Sadeghi A. Razavi, E.Shirani. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. 2011.
[5] Christopher K. Zarins David N. Ku, Don P. Giddens and Seymour Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 5:293–302, 1985.
[6] DA Knoll and DE Keyes. Jacobian-free Newton–Krylov methods: a survey of approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.
[7] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial Mathematics, 1996.
[8] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.
[9] Online cubit users manual, 2009. http://cubit.sandia.gov/documentation.html.
[10] K. Schloegel V. Kumar S. Shekhar G. Karypis, R. Aggarwal. Metis home page,
2009. http://wwwusers.cs.umn.edu/karypis/metis/.
[11] Paraview homepage, 2009. http://www.paraview.org/.
85
[12] Rebecca Brannon. Mohrs circle and more circles. 2003.
[13] L.P. Franca and S.L. Frey. Stabilized finite element methods. II: The incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,
99(2-3):209–233, 1992.
[14] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869,
1986.
[15] A. Klawonn and L.F. Pavarino. Overlapping Schwarz methods for mixed linear
elasticity and Stokes problems. Computer Methods in Applied Mechanics and Engineering,
165(1-4):233–245, 1998.
[16] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2009. http://www.mcs.anl.gov/petsc.
[17] Abaqus file format, 2009. http://www.simulia.com/.
[18] Visualization toolkit (vtk) homepage, 2009. http://www.vtk.org/.
[19] H.M. Crawshaw, W.C. Quist, E. Serrallach, C.R. Valeri, and F.W. LoGerfo. Flow disturbance at the distal end-to-side anastomosis: effect of patency of the proximal outflow segment and angle of anastomosis. Archives of Surgery, 115(11):1280, 1980.
[20] SS White, CK Zarins, DP Giddens, H. Bassiouny, F. Loth, SA Jones, and S. Glagov. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length. Journal of biomechanical engineering, 115:104, 1993.
[21] RS Keynton, SE Rittgers, and MCS Shu. The effect of angle and flow rate upon
hemodynamics in distal vascular graft anastomoses: an in vitro model study. Journal of biomechanical engineering, 113:458, 1991.
[22] F.N. van de Vosse F.J.H. Gijsen and J.D. Janssen. Wall shear stress in backwardfacing step flow of a red blood cell suspension. Biorheology, page 263V279, 1998. 86
[23] R.C.; Hassager O. Bird, R.B.; Armstrong. Dynamics of polymeric liquids. John Wiley and Sons Inc.,New York, NY, 1987.
[24] J.D. Janssen F.J.H. Gijsen, F.N. van de Vosse. The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation
model. Journal of Biomechanics, pages 601–608, 1999.
[25] F. Loth. Velocity and wall shear measurements inside a vascular graft model under steady and pulsatile flow conditions. 1993.
指導教授 黃楓南 審核日期 2013-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明