博碩士論文 992202004 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:
姓名 林侑鋌(Yu-ting Lin)  查詢紙本館藏   畢業系所 物理學系
(Thermal stability of supersaturated carbon incorporation in silicon)
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於碳原子與矽原子的大小不匹配,矽碳合金(Si:C)常被應用於n型金氧半場效電晶體(n-MOSFET)的源極(source)與汲極(drain)來對載子通道產生一個張應變(tensile strain),藉此來提升電子在通道中的漂移率(mobility)。此外,碳原子的參雜也能有效的調整矽基板的能帶結構以及阻止其他參雜原子的暫態增強擴散效應(transient enhanced diffusion)。然而,較高的張應變能也限制了碳原子在矽基板中的溶解度且導致了較低的熱穩定性。先前的研究指出,矽基板中碳原子的濃度越高則系統的熱穩定性就越低(應變鬆弛)。應變鬆弛(strain relaxation)主要有四種途徑:沉澱(precipitation)、錯位(dislocation)、去活化(deactivation)和體積補償(volume compensation)。在這個實驗中,我們使用兩種不同濃度的矽碳合金來測試與驗證上述的結果。矽碳合金是以離子佈植及固相磊晶成長(solid phase epitaxial regrowth)的方式來製作,其濃度最大值分別為0.813% (CL系統)及1.131%(CM系統)。我們藉由高解析度X光繞射儀(HRXRD)與動態模擬(kinematic simulation)來研究系統的張應變隨著熱能增加的進展及雜質的溶解度。我們也藉由傅立葉轉換紅外光譜儀(FTIR)來研究系統應變鬆弛的物理機制。我們發現在CL與CM系統中,在熱退火(post-annealing)的初始階段系統的總張應變都會有明顯的增加。此應變增加的行為是一個新穎的物理現象,它可以被歸因於間隙碳原子的再活化效應(re-incorporation effect)。隨後我們也發現系統的張應變會隨著熱退火時間的增長或熱退火溫度的增加逐漸的鬆弛。然而,此熱退火條件卻遠低於先前研究(需高溫加熱並以β-SiC沉澱析出的形式來釋放張應力)的條件。傅立葉轉換紅外光譜儀的量測結果顯示出CL系統和CM系統的張應變鬆弛的原因並非源於晶格位置上的碳原子被置換或β-SiC的形成,而是源於晶格位置上的碳原子能有效的吸引與限制住表面氧化效應產生的大量間隙矽原子,進而使體積增大應變鬆弛。藉由動態模擬我們也發現間隙碳原子的量與張應變鬆弛是有關連的,這代表著間隙碳原子在張應變鬆弛的過程中扮演著重要的角色。根據上述,我們認為系統的張應變鬆弛主要是源於晶格位置上的碳原子較佳的吸引及限制間隙原子的能力。此外,我們也確認矽基板中碳原子的濃度越高則其熱穩定性就越低。
摘要(英) Due to large size mismatch between carbon (C) and silicon (Si), silicon carbon alloy (Si:C) is used as the stressors in the source and drain (S/D) of n-type metal-oxide-semiconductor field effect transistor (n-MOSFET) to improve the electron mobility. In addition, it was shown that the incorporation of C in Si substrate leads to band structure modification and reduction in dopant transient enhanced diffusion. Nonetheless, the large strain energy also limits the solubility of C in Si substrate and causes lower thermal stability. Previous researches suggested that higher C concentration in Si substrate usually results in lower thermal stability by strain relaxation. There are four main pathways of strain relaxation such as precipitation, dislocation, deactivation and volume compensation. In this experiment, we used two concentrations of carbon-implanted silicon to test the models above. The peaks of their concentration are 0.813% (CL system) and 1.131% (CM system) respectively. After the thermal annealing treatment at 635oC for full recrystallization, post-annealing treatments were performed to study the thermal stability. High resolution X-ray diffractometer (HRXRD) rocking curve measurement and kinematic simulation were used to determine the strain evolution and impurity solubility layer by layer. Furthermore, Fourier transform infrared spectrometer (FTIR) observation was used to investigate the mechanism of strain relaxation. We found that the strain increased at the initial stage of post-annealing treatment for both CL and CM systems. It is a novel phenomenon and can be ascribed to the occurrence of C re-incorporation. We also found that even though the thermal budget applied is far below the threshold for β-SiC formation, almost complete strain relaxation is found without significantly substitutional carbon (Csub) loss. FTIR results revealed the strain relaxation is related to volume compensation by Csub-interstitial complex formation through oxidation injection of interstitial. By multilayer HRXRD kinematical simulation, we found correlation of the enhanced strain relaxation to interstitial C amount, implying interstitial C also play an important role in the observed strain relaxation during post-annealing treatment. We therefore suggested a model for the observed strain relaxation based on the good interstitial gettering capability of carbon. Furthermore, we also make sure higher C concentration in Si substrate usually results in lower thermal stability.
關鍵字(中) ★ 過飽和矽碳合晶 關鍵字(英) ★ supersaturated carbon incorporation in silicon
論文目次 1 Introduction 1
2 Background 4
2.1 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 4
2.1.1 The working principles of MOSFET 4
2.1.2 The scaling down of MOSFET 9 Short channel effect 9 Leakage current (transient enhanced diffusion) 11
2.2 Strain engineering 12
2.2.1 The generation of strain in Si 12
2.2.2 The mechanism of the improvement of electron mobility 14
2.3 The Si:C/Si system 17
2.3.1 The methods of growing the Si:C/Si system 17
2.3.2 The configurations of C in Si 18
2.3.3 The thermal stability of non-equilibrium Si:C/Si system 19
3 Experimental procedure and measurement 22
3.1 Sample preparation 23
3.2 Experimental procedure 27
3.3 Measurement methods 30
3.3.1 High resolution X-ray diffractometer (HRXRD) 30
3.3.2 Fourier transform infrared spectrometer (FTIR) 35
4 Results and discussion 37
4.1 The conditions of post-annealing 38
4.2 The strain evolution of the Si:C/Si system 40
4.3 The mechanism of strain relaxation 44
4.3.1 Reciprocal space mapping (RSM) measurement 44
4.3.2 Fourier transform infrared spectrometer (FTIR) measurement 45
4.4 The effect of C concentration on the stability of Si1-yCy/Si system 49
5 Conclusion 51
6 Reference 54
參考文獻 [1] R. Duffy et al. “Boron uphill diffusion during ultrashallow junction formation ”, Appl. Phys. Lett. 82, 3647 (2003)
[2] S. Ruffell, I. V. Mitchell, and P. J. Simpson, “ Solid-phase epitaxial regrowth of amorphous layers in Si (100) created by low-energy, high-fluence phosphorus implantation”, J. Appl. Phys. 98, 083522 (2005)
[3] P. Grudowski et al. “ An embedded silicon-carbon S/D stressor CMOS integration on SOI with enhanced carbon incorporation by laser spike annealing”, IEEE SOI Conf. Proc. P.17 (2007)
[4] Zhibin Ren et al. “ On implementation of embedded phosphorus-doped SiC stressors in SOI nMOSFETs”, Tech. Dig. – Int. Electron Devices Meet, P.172 (2008)
[5] E. R. Hsieh and Steve S. Chung, “The procimity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors” Appl. Phys. Lett. 96, 093501 (2001)
[6] Shao-Ming Koh, Ganesh S. Samudra and Yee-Chia Teo, “Carrier transport in strain N-channel field effect transistors with channel proximate silicon-carbon source/drain stressors”, Appl. Phys. Lett. 98, 03211 (2010)
[7] K. C. Ku et al. “Effects of germanium and carbon coimplants on phosphorus diffusion in silicon” Appl. Phys. Lett. 89, 112104 (2006)
[8] L. A. Edelman et al. “Effect of carbon codoping on boron diffusion in amorphous silicon” Appl. Phys. Lett. 93, 072107 (2008)
[9] H. J. Osten et al. “Substitutional versus interstitial carbon incorporation during pseudomorphic growth of Si1-yCy on Si (100)”, J. Appl. Phys. 80, 6711 (1996)
[10] H. J. Osten et al. “Substitutional carbon incorporation in epitaxial Si1-yCy alloys on Si (100) grown by molecular beam epitaxy”, Appl. Phys. Lett. 74,836 (1999)
[11] S. Y. Park et al. “Carbon incorporation pathways and lattice sites in Si1-yCy alloys grown on Si (100) by molecular beam epitaxy”, J. Appl. Phys. 91, 5716 (2002)
[12] T. O. Mitchell, J. L. Hoyt and J. F. Gibbons, “Substitutional carbon incorporation in epitaxial Si1-yCy layers grown by chemical vapor deposition”, Appl. Phys. Lett. 71,12 (1997)
[13] N.Cherkashin et al. “On the influence of elastic strain on the accommodation of carbon atoms into substitutional sites in strained Si:C layers grown on Si substrates” Appl. Phys. Lett. 94, 141910 (2009)
[14] J. W. Strane et al. “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy”, J. Appl. Phys. 79, 637 (1996)
[15] S. D. Kim, C. M. Park and J. C. S. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS” IEEE Trans. Electron Devices, 49, 1748 (2002)
[16] Shao-Ming Koh et al. “Silicon-carbon formed using cluster-carbon implant and laser-induced epitaxy for application as source/drain stressors in strained n-channel MOSFETs”, ECS, 156, P. H361 (2009)
[17] J. W. Strane et al. “Precipitation and relaxation in strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 76, 3656 (1994)
[18] A. R. Powell, F. K. LeGoues and S. S. lyer, “Formation of -SiC nanocrystals by the relaxation of Si1-yCy random alloy layers”, Appl. Phys. Lett. 94,324 (1994)
[19] H. J. Osten et al. “Strain relaxation in tensile-strained Si1-yCy layers on Si (001)”, Semicond. Sci. Technol. 11, 1678 (1996)
[20] M. S. Goorsky et al. “Thermal stability of Si1-yCy/Si strained layer superlattices”, Appl. Phys. Lett. 60, 2758 (1992)
[21] Yong Jeong KIM et al. “The loss kinetics of substitutional carbon in Si1-yCy regrown by solid phase epitaxy”, Jpn. J. Appl. Phys. 40, 773 (2001)
[22] G. G. Fischer et al. “Investigation of the high temperature behavior of strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 77, 1934 (1994)
[23] Y. T. Chuang, S. H. Wang and W. Y. Woon, “Effect of impurities on thermal stability of pseudomorphically strained Si:C layer” Appl. Phys. Lett. 98, 141918 (2011)
[24] J. F. Sage, W. B. Carter and M. J. Aziz, “Morphological instability of growth fronts due to stress-induced mobility variations” Appl. Phys. Lett. 77, 516 (2000)
[25] C. Guedj et al. “Precipitation of -SiC in Si1-yCy alloy”, J. Appl. Phys. Communications, 84, 4631 (1998)
[26] The stopping and range of ions in matter (SRIM) simulation, http://www.srim.org/
[27] W. E. Beadle, J. C. C. Tsai and R. D. Plummer, Quick reference manual for silicon integrated circuit technology, Bell Telephone Laboratories (1985)
[28] G. L. Olson and J. A. Roth, “Kinetics of solid phase crystallization in amorphous silicon”, Mater. Sci. Rep. 3, 1 (1998)
[29] W. Y. Woon et al. “Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth”, Appl. Phys. Lett. 97, 141906 (2010)
[30] R. C. Newman and J. B. Willis, “Vibrational absorption of carbon in silicon”, J. Phys. Chem. Solids 26, 373 (1965)
[31] P. Boucaud et al. “Photoluminescence of strained Si1-yCy alloys grown at low temperature”, Appl. Phys. Lett. 66, 70 (1995)
[32] W. J. Taylor, T. Y. Tan and U. Gösele, “Carbon precipitation in silicon: Why is it so difficult?”, Appl. Phys. Lett. 62, 3336 (1993)
指導教授 溫偉源(Wei-yen Woon) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明