博碩士論文 992202006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.206.194.83
姓名 張簡維軍(Wei-Chun Chang-Chien)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(An AFM Study on Supported Lipid Bilayers with and without Sterol)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ β-谷固醇對POPE膜物理特性的影響★ 固醇結構對PC膜物理特性的影響
★ 人造細胞膜的相行為及脂質-固醇交互作用之研究★ 非接觸式無機液晶配向與混合型液晶元件之 光電性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這篇論文中,我們利用原子力顯微鏡 (AFM) 來探討以雲母片為基底的脂質雙層(SLBs)在液態環境下的表面形貌。首先我們利用研究由小脂質單層囊泡 (SUV) 所得到的脂質雙層 1:1 DOPC/DPPC來最佳化樣品準備過程的實驗參數。其次,為了探討固醇對脂質雙層的影響,我們研究由小脂質單層囊泡 (SUV) 所得到的脂質雙層 1:1 POPC/DPPC 和 1:1 (POPC/DPPC) + 33mol% erg 表面形貌。為了了解溫度對脂質雙層的影響,我們也探討了在不同溫度下脂質雙層 1:1 POPC/DPPC 和 1:1 (POPC/DPPC) + 33mol% erg AFM影像。含有固醇和不含固醇的樣品表面形貌非常不同。我們觀察到在這兩種樣品的AFM影像中,都有兩種不同厚度的脂質區塊。實驗結果顯示不含固醇樣品的單一相溫度 (one-phase temperature) 高於含有固醇的樣品。此外隨著溫度上升到單一相溫度,含有固醇和不含固醇的脂質雙層有不同的熔化行為。藉由比較AFM和NMR 實驗數據,我們推測在不含固醇的樣品中,較厚的脂質區塊處於凝膠態 (gel phase)。而含有固醇的樣品中,較厚的脂質區塊處於液晶態 (liquid ordered phase)。
摘要(英) In this thesis, we investigate the morphology of supported lipid bilayers (SLBs) on mica using atomic force microscopy (AFM) in liquid environment. To find the optimal conditions for the preparation of SLBs, the properties of 1:1 DOPC/DPPC prepared from small unilamellar vesicle (SUV) were studied. To investigate the effect of sterol on SLBs, the morphologies of 1:1 POPC/DPPC and 1:1 (POPC/DPPC) + 33 mol% erg prepared from SUV were studied. To investigate effect of temperature on SLBs, AFM images of 1:1 POPC/DPPC and 1:1 (POPC/DPPC) + 33mol% erg were also studied as a function of temperature. The morphologies of SLBs with and without sterol are very different. Higher and lower domains were observed in AFM images of both erg-free and erg-containing SLBs. The one-phase temperature in erg-free SLBs is higher than erg-containing SLBs. The “melting” behaviors of erg-free and erg-containing SLBs are different when the temperature is raised. By comparing AFM and NMR data, we suggest the higher domains in erg-free and erg-containing SLBs are in the gel and liquid ordered phases, respectively.
關鍵字(中) ★ 原子力顯微鏡
★ DOPC
★ DPPC
★ 麥角固醇
★ 人造細胞膜
★ 基板支撐的脂質雙層
關鍵字(英) ★ AFM
★ DOPC
★ DPPC
★ ergosterol
★ model membrane
★ supported lipid bilayers
論文目次 Abstract Ⅰ
摘要 Ⅱ
致謝 Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables IX
Chapter 1 Introduction 1
1.1 Biological membrane 1
1.2 Physical property of lipid molecule 4
1.3 Supported lipid bilayer 7
Chapter 2 Instrument and principle 9
2.1 Atomic force microscopy 9
2.2 Basic principle 10
2.3 Modes of operation 11
2.3.1 Contact mode 12
2.3.2 Tapping mode 13
2.4 Instrument information 13
Chapter 3 The preparation of supported lipid bilayer from small unilamellar vesicles (SUVs) 14
3.1 Materials 14
3.2 Supported lipid bilayer (SLB) prepared by the vesicle fusion methods 16
3.3 The property of SLBs prepared from SUV 19
3.3.1 DOPC/DPPC on mica prepared from SUV 19
3.3.2 The effect of cooling rate on the bilayer morphology 20
3.3.3 The disappear temperature of higher domains 21
Chapter 4 Morphology of SLBs in absence and presence of sterol 24
4.1 SLBs of 1:1 POPC/DPPC 24
4.2 SLBs of (1:1 POPC/DPPC) + 33 mol% erg 30
4.3 Comparison between 1:1 POPC/DPPC and (1:1 POPC/DPPC) + 33 mol% erg 39
Chapter 5 Conclusions 42
Reference 45
參考文獻 [1] R.B. Gennis, 1989. Biomembranes, Molecular Structure and Function. Springer-Verlag, New York. ISBN 0-387-96760-5
[2] M. Luckey, 2008. Membrane Structural Biology: with Biochemical and Biophysical Foundations. Cambridge University Press. ISBN 978-0-521-85655-3
[3] M. Edidin, Lipids on the frontier: a century of cell-membrane bilayers, Nat Rev Mol Cell Biol 4 (2003) 414-418.
[4] E. Yechiel, M. Edidin, Micrometer-scale domains in fibroblast plasma membranes, J Cell Biol 105 (1987) 755-760.
[5] M. Budatha, T.J. Ningshen, A. Dutta-Gupta, Is hexamerin receptor a GPI-anchored protein in Achaea janata (Lepidoptera: Noctuidae)?, J Biosci 36 (2011) 545-553.
[6] J. Fantini, N. Garmy, R. Mahfoud, N. Yahi, Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases, Expert Rev Mol Med 4 (2002) 1-22.
[7] R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver, J. Fantini, Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins, J Biol Chem 277 (2002) 11292-11296.
[8] D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle, Science 327 (2010) 46-50.
[9] C.-J. Weng, Y.-W. Hsueh, 運用氘核磁共振研究POPE/Ergosterol膜之物理性質, (2005). Thesis
[10] J.L. Rubenstein, B.A. Smith, H.M. McConnell, Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines, Proc Natl Acad Sci U S A 76 (1979) 15-18.
[11] L.K. Tamm, H.M. McConnell, Supported phospholipid bilayers, Biophys J 47 (1985) 105-113.
[12] M. Bagnat, A. Chang, K. Simons, Plasma Membrane Proton ATPase Pma1p Requires Raft Association for Surface Delivery in Yeast, Mol Biol Cell 12 (2001) 4129-4138.
[13] K. Malinska, J. Malinsky, M. Opekarova, W. Tanner, Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells, J Cell Sci 117 (2004) 6031-6041.
[14] P. Zabrocki, I. Bastiaens, C. Delay, T. Bammens, R. Ghillebert, K. Pellens, C. De Virgilio, F. Van Leuven, J. Winderickx, Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson, Biochim Biophys Acta 1783 (2008) 1767-1780.
[15] Y.W. Hsueh, C.J. Weng, M.T. Chen, J. Thewalt, M. Zuckermann, Deuterium NMR study of the effect of ergosterol on POPE membranes, Biophys J 98 (2010) 1209-1217.
[16] K. El Kirat, S. Morandat, Y.F. Dufrene, Nanoscale analysis of supported lipid bilayers using atomic force microscopy, Biochim Biophys Acta 1798 (2010) 750-765.
[17] B. Blagovic, J. Rupcic, M. Mesaric, K. Georgiú, V. Maric, Lipid Composition of Brewer’s Yeast, Food Technology and Biotechnology 39 (2001) 175-181.
[18] C.-Y. Lin, Y.-W. hsueh, The effects of composition and thermal history on the properties of supported lipid bilayers, (2011). Thesis
[19] G. Francius, S. Dufour, M. Deleu, M. Paquot, M.P. Mingeot-Leclercq, Y.F. Dufrene, Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity, Biochim Biophys Acta 1778 (2008) 2058-2068.
[20] S.-S. Chyou, Y.-W. Hsueh, The morphology of DPPC/DOPC bilayers on mica and the substrate effect: an AFM study, (2009). Thesis
[21] G. Bining, C.F. Quate, C. Gerber, Atomic force microscope, Phys Rev Lett 56 (1986) 930-933.
[22] D. Keller, N.B. Larsen, I.M. Moller, O.G. Mouritsen, Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers, Phys Rev Lett 94 (2005) 025701.
[23] D.N. Ganchev, N.J. Cobb, K. Surewicz, W.K. Surewicz, Nanomechanical Properties of Human Prion Protein Amyloid as Probed by Force Spectroscopy, Biophys J 95 (2008) 2909-2915.
[24] C. Canale, M. Jacono, A. Diaspro, S. Dante, Force spectroscopy as a tool to investigate the properties of supported lipid membranes, Microsc Res Tech 73 (2010) 965-972.
[25] K.H. Sheikh, C. Giordani, J.I. Kilpatrick, S.P. Jarvis, Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers, Langmuir 27 (2011) 3749-3753.
[26] Z.V. Leonenko, E. Finot, H. Ma, T.E. Dahms, D.T. Cramb, Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy, Biophys J 86 (2004) 3783-3793.
[27] K. El Kirat, L. Lins, R. Brasseur, Y.F. Dufrene, Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers, Langmuir 21 (2005) 3116-3121.
[28] M.C. Giocondi, F. Besson, P. Dosset, P.E. Milhiet, C. Le Grimellec, Remodeling of ordered membrane domains by GPI-anchored intestinal alkaline phosphatase, Langmuir 23 (2007) 9358-9364.
[29] S. Morandat, K. El Kirat, Membrane resistance to Triton X-100 explored by real-time atomic force microscopy, Langmuir 22 (2006) 5786-5791.
[30] K. El Kirat, V. Dupres, Y.F. Dufrene, Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy, Biochim Biophys Acta 1778 (2008) 276-282.
[31] H.A. Rinia, J.W. Boots, D.T. Rijkers, R.A. Kik, M.M. Snel, R.A. Demel, J.A. Killian, J.P. van der Eerden, B. de Kruijff, Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues, Biochemistry 41 (2002) 2814-2824.
[32] N. Vuong, J.E. Baenziger, L.J. Johnston, Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions, Chem Phys Lipids 163 (2010) 117-126.
[33] M.-Y. Kuo, Y.-W. Hsueh, Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study, (2009). Thesis
[34] J.M. Vanegas, R. Faller, M.L. Longo, Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging, Langmuir 26 (2010) 10415-10418.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2013-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明