博碩士論文 992202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.22.181.209
姓名 周緯浩(Wei-Hao Chou)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二維光子晶體雙重共振腔的光輻射研究
相關論文
★ 應力緩衝自聚性砷化銦量子點之電場調制反射光譜★ 垂直耦合自聚性砷化銦鎵量子點之光學特性研究
★ 氮化銦鎵/氮化鎵多層量子井之光學特性研究★ 自聚性砷化銦鎵量子點之光電特性
★ 熱退火處理之量子點的能階變化及其理論計算★ 碲硒化鋅磊晶層之光學特性研究
★ 硒化鋅磊晶層之光學性質★ 氮化銦鎵卅氮化鎵多層量子井發光二極體之電性研究
★ 低溫成長氮化鎵的光電性質★ 自聚性矽鍺多層量子點光學特性研究
★ III--氮族半導體的極化電場效應★ 應力緩衝層對砷化銦量子點侷限能階之影響
★ 砷化銦量子點在二維光子晶體中共振模態之光學特性研究★ 高銦含量氮化銦鎵薄膜之光學性質研究
★ 氮化銦奈米柱之光學性質研究★ 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文對光子晶體L3共振腔、雙重L3共振腔的共振模態與光輻射特性進行研究。利用微光激發螢光(μ-PL)光譜對共振模態進行觀察,並以二維平面波展開法與三維有限時域差分法兩種模擬方式進行模擬。將實驗與模擬結果做比較,結果顯示若改變空氣孔柱半徑與晶格常數的比值(R/a),則共振波長會變化,也會產生新的共振模態。在雙重L3共振腔的μ-PL光譜中發現最長波長的兩個模態,其耦合強度隨著共振腔間的空氣孔柱排數(n)增加而減少。在目前各種微共振腔的研究結果中,n=1的雙重L3共振腔具有很高的耦合強度。在本實驗的結果中,品質因子約為790-1530,沒有發現如文獻所述[17]品質因子會隨耦合強度增加而減少的相對關係。在量子點薄片上製作光子晶體結構後,使得量子點的螢光在光輸入輸出曲線(對數關係曲線)中的斜率,A系列試片由1.12上升至1.53,B系列試片由1.32上升至1.81,推測是受到蕭克利-里德-霍爾復合(Shockley-Read-Hall recombination)影響。
摘要(英) In this thesis, the resonant modes and radiative properties of L3 cavity and double L3 cavity were studied. The resonant modes were observed by micro-photoluminescence(μ-PL) spectroscopy. Two kinds of simulations were used: two-dimensional plane wave expansion method (2D PWEM) and three-dimensional finite-difference time-domain method (3D FDTD method). Then the information of experiments and simulations were compared. The results show that the wavelength of each resonant mode is changed and a new resonant mode is generated if the ratio of air holes’ radius and lattice constant are changed. The coupling strength of the resonant modes of two longest wavelength in the spectrum of double L3 cavity is decreased as the number of air-hole layers increasing. Compared with the other microcavities has been reported, the coupling strength in 90 degree double L3 cavity with n=1 is extremely high. In this experiment, the observed quality factor is around 790-1530. The tendency that quality factor is higher with larger n [17] did not observed in this study. The slope in L-L curve (log-log scale) would be increased from 1.12 to 1.53 in A series and from 1.32 to 1.81 in B series after the photonic crystal structure being fabricated at quantum dots’ slab. It may be deduced by the Shockley-Read-Hall recombination.
關鍵字(中) ★ 光子晶體
★ 共振模態
★ 耦合強度
★ 微共振腔
關鍵字(英) ★ photonic crystal
★ resonant mode
★ coupling strength
★ coupling energy
★ microcavity
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 viii
第1章 導論 1
第2章 基本原理 3
2-1 光子晶體 3
2-2 光子晶體共振腔 6
2-3 共振腔耦合機制 9
2-4 光子晶體的模擬原理與方法 10
2-5 自發輻射與受激輻射 14
2-6 載子復合機制 19
第3章 試片結構與量測系統 22
3-1 試片製程與試片結構 22
3-2 微光激發螢光量測系統(μ-PL) 28
第4章 實驗結果與討論 30
4-1 共振模態分析 30
4-2 共振腔間耦合強度隨共振腔間距離調變 35
4-3 不同間隔排數的雙重共振腔變激發功率實驗 51
第5章 結論 65
參考資料 66
參考文獻 參考資料
[1] E. M. Purcell “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681(1946)
[2] Y. Akahane et al. “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 425, 944 (2003)
[3] A. R. A. Chalcraft et al. “Mode structure of the L3 photonic crystal cavity”, Appl. Phys. Let. 90, 241117(2007)
[4] J. P. Reithmaier et al. “Strong coupling in a single quantum dot-semiconductor microcavity system”, Nature 432, 197(2004)
[5] T. Yoshie et al. “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity”, Nature 432, 200(2004)
[6] W. -H. Chang et al. “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities”, Phys. Rev. Lett. 96, 117401(2006)
[7] K. Hennessy et al. “Quantum nature of a strongly coupled single quantum dot-cavity system”, Nature 445, 896(2007)
[8] A. Kress et al. “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals”, Phy. Rev. B 71, 241304 (2005)
[9] T. Asano et al. “Time-domain response of point-defect cavities in two-dimensional photonic crystal slabs using picoseconds light pulse”, Appl. Phys. Lett. 88, 151102(2006)
[10] S. Strauf et al. “Self-tuned quantum dot gain in photonic crystal lasers”, Phy. Rev. Lett. 96, 127404 (2006)
[11] M. Nomura et al. “Room temperature continuous-wave lasing in photonic crystal nanocavity”, Opt. Exp. 14, 6308 (2006)
[12] M. Nomura et al. “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor”, Phy. Rev. B 75, 195313 (2007)
[13] K. Tanabe et al. “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate”, Opt. Exp. 17, 7036 (2009)
[14] M. Nomura et al. “Photonic crystal nanocavity laser with a single quantum dot gain”, Opt. Exp. 17, 15975 (2009)
[15] A. Dousse et al. “Ultrabright source of entangled photon pairs”, Nature 466, 217(2010)
[16] H. Lin et al. “Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities”, Opt. Exp. 18, 23948(2010)
[17] A. R. A. Chalcraft et al. “Mode structure of coupled L3 photonic crystal cavities”, Opt. Exp. 19, 5670(2011)
[18] E. Yablonovitch “Inhibited spontaneous emission in solid-state physics and electronics”, Phy. Rev. Lett. 58, 2059 (1987)
[19] S. John “Strong localization of photons in certain disordered dielectric superlattices”, Phy. Rev. Lett. 58, 2486 (1987)
[20] 欒丕綱、陳啟昌, 「光子晶體-從蝴蝶翅膀到奈米光子學」, 五南圖書出版公司(2005)
[21] K. A. Atlasov et al. “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities”, Opt. Exp. 16, 16255 (2008)
[22] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propagation, 14, 302 (1966)
[23] 簡宏達, 「二維雙輸入雙輸出光子晶體分光器」, 國立中央大學光電科學研究所, 碩士論文(2005).
[24] 張高德, 「廣義光子晶體原件之研究與分析」, 國立中央大學光電科學研究所, 博士論文(2007)
[25] 黃家豪, 「二維光子晶體耦合共振腔之共振模態調變研究」, 國立中央大學物理學系, 碩士論文(2011)
[26] S. Vignolini, “Nanofluidic control of coupled photonic crystal resonators”, Appl. Phys. Lett. 96, 141114 (2010)
[27] G. Bjork et al. “Definition of a laser threshold”, Phy. Rev. A 50, 1675 (1994)
[28] M. Nomura et al. “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation”, Appl. Phys, Lett. 89, 161111 (2006)
[29] M. Brunstein et al. “Radiation patterns from coupled photonic crystal nanocavities”, Appl. Phys. Lett. 99, 111101 (2011)
[30] K. A. Atlasov et al. “Large mode splitting and lasing in optimally coupled photonic-crystal microcavities”, Opt. Exp. 19, 2619 (2011)
[31] K. Nozaki et al. “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser”, Opt. Exp. 15, 7506(2007)
[32] 張文豪, 徐子民 「半導體量子光學」, 物理雙月刊, 28, 851, (2006)
指導教授 徐子民(Tzu-Min Hsu) 審核日期 2013-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明