博碩士論文 992202014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.118.31.247
姓名 廖振和(Liao Zhenhe)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A STM Study of Growth of Rh and Rh-Au Bimetallic Nanoclusters on the θ-Al2O3/NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們以掃描穿隧式顯微鏡顯微鏡(Scanning Tunneling Microscope, STM)探測Rh以及Rh-Au合金奈米金屬團簇在Al2O3/NiAl(100)上的形貌,主要研究奈米團簇在室溫下的成長模式以及加熱對團簇造成的影響。在室溫下形成的純Rh團簇於低鍍量時(< 0.51 ML),隨著鍍量的增加,團簇的尺寸會成長、同時團簇的數目會有顯著的增加;在較高鍍量時(> 0.51 ML),隨著鍍量的增加,團簇的直徑會有顯著的成長、高度有些微成長,而團簇數目不會改變。在室溫下形成的Rh團簇傾向形成三維結構,並且在低鍍量(0.04 ML)及低溫(150 K)的條件下也有相同的結果。在室溫下形成的純Rh團簇的加熱實驗中,在高鍍量時(> 1.35 ML),加熱到430 K後,Rh團簇的直徑會縮減、形成在430 K能量較穩定的結構,同時團簇數目會明顯增加;加熱到570 K後,由於燒結(sintering)的效應,團簇的尺寸增加、伴隨著團簇數目減少;加熱到800 K後,燒結的效應更加顯著,團簇尺寸的增加以及數目的縮減更為明顯。
  在Rh以及Rh-Au合金團簇的實驗中,Rh和Au依序在室溫下蒸鍍在Al2O3/NiAl(100)。在Rh後鍍的情況下,部分Rh會加入到Au的團簇、其餘Rh會形成額外的純Rh團簇;在Au後鍍的情況下,全部的Au都會加入到Rh的團簇形成合金團簇。在室溫下形成的Rh-Au合金團簇的加熱實驗中,Au的鍍量越高、加熱後Au-Rh團簇的鍍量減少越快。Rh以及Au團簇加熱過後的特性在Rh-Au合金團簇加熱過後都能被觀察到。當Rh的鍍量夠高時(> 1 ML),從室溫加熱到430 K後,Rh-Au合金團簇會和純Rh團簇有相同的現象:合金團簇直徑會縮減、伴隨著團簇數目增加。當合金之中有高比例的Au時,加熱到700 K後,Rh-Au合金團簇會有類似純Au團簇的現象:團簇的尺寸分佈會變寬並出現類似雙峰分佈的情形。
摘要(英) Rh and Rh-Au bimetallic nanoclusters formed through vapor deposition on the thin film Al2O3/NiAl(100) are studied by scanning tunneling microscope (STM). We investigate the growth behaviors of Rh and Rh-Au bimetallic clusters at 300 K and the effect of thermal treatments. In the studies of pure Rh clusters formed at 300 K, at low coverage (< 0.51 ML), the cluster density increases with the coverage, more noticeable than the increase of average size; at larger coverages (> 0.51 ML), the cluster density changes little while the diameter increases significantly, accompanied by a slightly increase of height. Rh clusters prefer to form 3D structures even at very low coverage (0.04 ML) and low temperature (150 K). In the studies of annealed Rh clusters formed at 300 K, for high coverages (> 1.35 ML), Rh clusters reduce to smaller ones to form an energetically more favored structure on annealing to 430 K, accompanied by increased cluster density, and then form larger clusters with lower density at 570 K; the size increases and the density decreases further at 800 K. Oswald ripening is responsible for the increase of average size and the decrease of cluster density above 570 K.
The Rh-Au bimetallic clusters are formed by sequential deposition of Au and Rh on the Al2O3/NiAl(100) at 300 K. For the deposition of Au and then Rh, the deposited Rh not only joins the existing Au clusters but also forms new Rh clusters on the oxide surface; for the reverse order of deposition, all the deposited Au were incorporated in the existing Rh clusters. In the studies of thermal stability of the Rh-Au bimetallic clusters, more Au in the bimetallic clusters, more the coverage decreases (both Au and Rh) with the temperature. Both thermal-induced features of Au and Rh are exhibited. When initial amount of Rh is great (> 1 ML), the cluster density increase at 430 K, showing the feature of pure Rh clusters. For the sample with high Au-to-Rh ratio annealed above 700 K, the morphology of bimetallic clusters is similar to the pure Au clusters: broad and bimodal-like distributions of size are observed.
關鍵字(中) ★ 掃描穿隧式顯微鏡
★ 奈米團簇
★ 銠
★ 金
關鍵字(英) ★ STM
★ nanocluster
★ Rh
★ Au
論文目次 Chapter 1 Introduction 01
Chapter 1 References 03
Chapter 2 Literature Survey 05
2.1 Al2O3 grown on NiAl(100) 05
2.1.1 NiAl crystal 05
2.1.2 θ-Al2O3 grown on NiAl(100) 07
2.2 Rh and Au nanoclusters supported on oxide surfaces 10
2.2.1 Au nanoclusters supported on Al2O3/NiAl(100) 11
2.2.2 Rh nanoclusters supported on Al2O3/NiAl(110) 14
2.2.3 Rh and Au nanoclusters supported on TiO2(110) 16
Chapter 2 References 30
Chapter 3 Experimental Instrument and Procedures 34
3.1 Vacuum system 34
3.1.1 Introduction of vacuum 34
3.1.2 Introduction of UHV system 35
3.1.3 Experimental instruments 38
3.2 Scanning tunneling microscope 39
3.2.1 Operation principles of STM 39
3.2.2 Operation of STM 42
3.2.3 RHK-UHV 300 STM in experiment 45
3.2.4 Preparing the STM tip 49
3.3 Experimental procedures 50
3.4 Estimation of coverage 51
Chapter 3 References 53
Chapter 4 Results and Discussions 55
4.1 Au nanoclusters supported on Al2O3/NiAl(100) 55
4.2 Rh nanoclusters supported on Al2O3/NiAl(100) 56
4.2.1 Rh clusters supported on Al2O3/NiAl(100) with different
coverages 56
4.2.2 Annealed Rh clusters 64
4.3 Rh-Au bimetallic nanoclusters supported on Al2O3/NiAl(100) 76
4.3.1 Rh-Au clusters supported on Al2O3/NiAl(100) with different
coverages 76
4.3.2 Annealed Rh-Au bimetallic clusters 81
Chapter 4 References 90
Chapter 5 Conclusions 92
參考文獻 Chapter 1 References
[1] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, Vol 271, pp. 933-937, February 1996.
[2] M. Bäumer, H.-J. Freund, “Metal deposits on well-ordered oxide films”, Prog. Surf. Sci., Vol 61, pp. 127-198, August 1999.
[3] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, “Semimetal to Semiconductor Transition in Carbon Nanoparticles”, Phys. Rev. Lett., Vol 80, pp. 4241-4244, May 1998.
[4] C. R. Henry, “Surface studies of supported model catalysts”, Surf. Sci. Rep., Vol 31, pp. 231-233, 235-325, 1998.
[5] M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catal. Today, Vol 36, pp. 153-166, April 1997.
[6] M. Valden, X. Lai, D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science, Vol 281, pp. 1647-1650, September 1998.
[7] J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications., Wiley, New York, USA, 1994.
[8] C. Campbell, “Bimetallic Surface Chemistry”, Annu. Rev. Phys. Chem., Vol 41, pp. 775-837, 1990.
[9] J.A. Rodriguez, “Physical and chemical properties of bimetallic surfaces”, Surf. Sci. Rep., Vol 24, pp. 223-287, 1996.
[10] J. Kiss, L. Óvári, L. Deák, A. Berkó, “Characterization of Au-Rh and Au-Mo bimetallic nanoclusters on TiO2(110): A comparative study”, React. Kinet. Catal. Lett., Vol 96, pp. 391-396, April 2009.
[11] L. Óvári, L. Bugyi, Z. Majzik, A. Berkó, J. Kiss, “Surface Structure and Composition of Au-Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study”, J. Phys. Chem. C, Vol 112, pp. 18011-18016, October 2008.
[12] L. Óvári, A. Berkó, N. Balázs, Z. Majzik, J. Kiss, “Formation of Rh-Au Core-Shell Nanoparticles on TiO2(110) Surface Studied by STM and LEIS”, Langmuir, Vol 26, pp. 2167-2175, November 2009.
Chapter 2 References
[1] M. Bäumer, H.-J. Freund, “Metal deposits on well-ordered oxide films”, Prog. Surf. Sci., Vol 61, pp. 127-198, August 1999.
[2] R.M. Jaeger, K. Kuhlenbeck, H.-J. Freund, M. Wutting, W. Hoffmann, R. Franchy, H. Ibach, “Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110)”,Surf. Sci., Vol 259, pp. 235-252, December 1991.
[3] P. Gassmann, R. Franchy, H. Ibach, “Preparation of a well ordered aluminum oxide layer on NiAl(001)”, J. Electron Spectrosc. Relat. Phenom., Vol 64-65, pp. 315-320, December 1993.
[4] P. Gassmann, R. Franchy, H Ibach, “Investigations on phase transitions within thin Al2O3 layers on NiAl(001) – HREELS on aluminum oxide films”, Surf. Sci., Vol 319, pp. 95-105, November 1994.
[5] R. Blum, D. Ahlbehrendt, H. Niehus, “Growth of Al2O3 stripes in NiA(001)”, Surf. Sci., Vol 396, pp. 176, January 1998.
[6] J. Mendez, H. Niehus, “Growth of chromium on the structured surface of Al2O3/NiAl(100)”, Appl. Surf. Sci., Vol 142, pp. 152-158, April 1999.
[7] N. Fremy, V. Maurice, P. Marcus, “ Initial Stages of Growth of Alumina on NiAl(001) at 1025 K”, J. Am. Ceram. Soc., Vol 86, pp. 669-675, April 2003.
[8] N. Fremy, V. Maurice, P. Marcus, “X-ray photoelectron spectroscopy study of thin oxide layers formed on (001)-oriented β-NiAl single-crystal surfaces”, Surf. Interf. Anal., Vol 34, pp. 519-523, August 2002.
[9] V. Maurice, N. Frémy, P. Marcus, “Hydroxylation-induced modifications of the Al2O3/NiAl(001) surface at low water vapour pressure”, Surf. Sci., Vol 581, pp. 88-104, March 2005.
[10] W.C. Lin, C.C. Kuo, M.F. Luo, K.J. Song, M.T. Lin, “Self-aligned Co nanoparticle chains supported by single-crystalline Al2O3/NiAl(100) template” Appl. Phys. Lett., Vol 86, pp. 043105, January 2005.
[11] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, “Patterning Co nanoclusters on thin-film Al2O3/NiAl(100)”, Nanotechnology, Vol 17, pp. 360-366, December 2005.
[12] D.B. Miracle, “The physical and mechanical properties of NiAl”, Acta Metall. Mater., Vol 41, pp. 649-684, March 1993.
[13] D.A. King, D.P. Woodruff (Eds.), “Chapter 4 Dynamics and diffusion of atoms at stepped surfaces”, Chem. Phys. Solid Surf., Vol. 8, pp. 102-148, 1997.
[14] R.P. Blum, D. Ahlbehrendt, H. Niehus, “Preparation-dependent surface composition and structure of NiAl(001): SPA-LEED and NICISS study”, Surf. Sci., Vol 366, pp. 107-120, October 1996.
[15] D.R. Mullins, S.H. Overbury, “The structure and composition of the NiAl(110) and NiAl(100) surfaces”, Surf. Sci., Vol 199, pp. 141-153, 1988.
[16] R.P. Blum, H. Niehus, “Initial growth of Al2O3 on NiAl(001)”, Appl. Phys. A, Vol 66, pp. S529-S533, 1998.
[17] H.L. Davis, J. Noonan, “Rippled Relaxation in the (110) Surface of the Ordered Metallic Alloy NiAl”, Phys. Rev. Lett., Vol 54, pp. 566-569, February 1985.
[18] J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications., Wiley, New York, USA, 1994.
[19] C. Campbell, “Bimetallic Surface Chemistry”, Annu. Rev. Phys. Chem., Vol 41, pp. 775-837, 1990.
[20] J.A. Rodriguez, “Physical and chemical properties of bimetallic surfaces”, Surf. Sci. Rep., Vol 24, pp. 223-287, 1996.
[21] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, “Growth and electronic properties of Au nanoclusters on thin-film Al2O3/NiAl(100) studied by scanning tunnelling microscopy and photoelectron spectroscopy with synchrotron radiation”, Surf. Sci., Vol 602, pp. 241-248, January 2008.
[22] G.R. Hu, C.S. Chao, H.W. Shiu, C.T. Wang, W.R. Lin, Y.J. Hsu, M.F. Luo, “Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100)”, Phys. Chem. Chem. Phys., Vol 13, pp. 3281-3290, January 2011.
[23] L. Óvári, L. Bugyi, Z. Majzik, A. Berkó, J. Kiss, “Surface Structure and Composition of Au-Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study”, J. Phys. Chem. C, Vol 112, pp. 18011-18016, October 2008.
[24] L. Óvári, A. Berkó, N. Balázs, Z. Majzik, J. Kiss, “Formation of Rh-Au Core-Shell Nanoparticles on TiO2(110) Surface Studied by STM and LEIS”, Langmuir, Vol 26, pp. 2167-2175, November 2009.
[25] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, T.Y. Wang, P.L. Chen, C.C. Kuo, “Growth of Co clusters on thin films Al2O3/NiAl(100)”, J. Chem. Phys., Vol 124, pp. 164709, April 2006.
[26] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, “Scanning tunneling microscopy study of growth of Pt nanoclusters on thin film Al2O3/NiAl(100)”, Surf. Sci., Vol 600, pp. 4978-4985, November 2006.
[27] G. Medeiros-Ribeiro, A.M. Bratkovski, T.I. Kamins, D.A.A. Ohlberg, R.S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes”, Science, Vol 279, pp. 353-355, January 1998.
[28] F.M. Ross, J. Tersoff, R.M. Tromp, “Coarsening of Self-Assembled Ge Quantum Dots on Si(001)”, Phys. Rev. Lett., Vol 80, pp. 984-987, February 1998.
[29] L. Óvári, J. Kiss, “Growth of Rh nanoclusters on TiO2(110): XPS and LEIS studies”, Appl. Surf. Sci., Vol 252, pp. 8624-8629, October 2006.
[30] A. Berkó, G. Ménesi, F. Solymosi, “STM study of rhodium deposition on the TiO2(110)-(1×2) surface”, Surf. Sci., Vol 372, pp. 202-210, February 1997.
[31] L.Z. Mezey, J. Giber, “The Surface Free Energies of Solid Chemical Elements: Calculation from Internal Free Enthalpies of Atomization”, Jpn. J. Appl. Phys., Vol 21, pp. 1569-1571, 1982.
[32] M.D. Morse, “Clusters of transition-metal atoms”, Chem. Rev., Vol 86, pp. 1049-1109, 1986.
[33] O. Ozturka, J.B. Parkb, S. Mac, J.S. Ratliffb, J. Zhoud, D.R. Mullinsd, D.A. Chenb, “Probing the interactions of Pt, Rh and bimetallic Pt–Rh clusters with the TiO2(110) support”, Surf. Sci., Vol 601, pp. 3099-3113, July 2007.
[34] A.M. Kiss, M. Švec, A. Berkó, “The effect of preadsorbed K on the size distribution of Au nanoparticles on TiO2(110) surface”, Surf. Sci., Vol 600, pp. 3352-3360, August 2006.
[35] Q. Fu, T. Wagner, “Interaction of nanostructured metal overlayers with oxide surfaces”, Surf. Sci. Rep., Vol 62, pp. 431-498, November 2007.
Chapter 3 References
[1] Hans Lüth, Surface and Interfaces of Solids., Springer-Verlag, New York, USA, 1993.
[2] A. Chambers, et al., Basic Vacuum Technology., Institute of Physics Pub., Philadelphia, USA, 1989.
[3] Hans Lüth, Surface and Interfaces of Solid Materials., Springer-Verlag, New York, USA, 1995.
[4] 蘇青森等編著,真空技術與應用,行政院國家科學委員會精密儀器發展中心,台灣 新竹市,2001。
[5] G. Binnig, H. Rohrer, E. Weibel, “Tunneling through a controllable vacuum gap”, Appl. Phys. Lett., Vol 40, pp. 178-180, 1982.
[6] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “7 × 7 Reconstruction on Si(111) Resolved in Real Space”, Phys. Rev. Lett., Vol 50, pp. 120-123, January 1983.
[7] R. Eisberg, R. Resnick, QUANTUM PHYSICS OF ATOMS, MOLECULES, SOLIDS, NUCLEI, AND PARTICLES., Wiley, New Work, USA, 1985.
[8] R.J. Behm, et al., Scanning Tunneling Microscopy and Related Methods., Springer-Verlag, New York, USA, August 1990.
[9] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc. A, Vol 119, pp. 173-181, May 1928.
[10] D-H. Wooa, E-M. Choia, Y-H. Yoona, K-J. Kima, I.C. Jeonb, H. Kang, “Current-distance-voltage characteristics of electron tunneling through an electrochemical STM junction”, Surf. Sci., Vol 601, pp. 1554-1559, March 2007.
[11] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Electron Emission in Intense Electric Fields”, Phys. Rev. Lett., Vol 49, pp. 51-61, July 1982.
[12] User’s guide of RHK-UHV 300.
[13] R.P. Blum, H. Niehus, “Initial growth of Al2O3 on NiAl(001)”, Appl. Phys. A, Vol 66, pp. S529-S533, 1998.
[14] R. Blum, D. Ahlbehrendt, H. Niehus, “Growth of Al2O3 stripes in NiA(001)”, Surf. Sci., Vol 396, pp. 176, January 1998.
[15] J. Mendez, H. Niehus, “Growth of chromium on the structured surface of Al2O3/NiAl(100)”, Appl. Surf. Sci., Vol 142, pp. 152-158, April 1999.
[16] P. Gassmann, R. Franchy, H Ibach, “Investigations on phase transitions within thin Al2O3 layers on NiAl(001) – HREELS on aluminum oxide films”, Surf. Sci., Vol 319, pp. 95-105, November 1994.
[17] N. Fremy, V. Maurice, P. Marcus, “ Initial Stages of Growth of Alumina on NiAl(001) at 1025 K”, J. Am. Ceram. Soc., Vol 86, pp. 669-675, April 2003.
[18] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, “Patterning Co nanoclusters on thin-film Al2O3/NiAl(100)”, Nanotechnology, Vol 17, pp. 360-366, December 2005.
[19] S. Gwo, C.P. Chou, C.L. Wu, Y.J. Ye, S.J. Tsai, W.C. Lin, M.T. Lin, “Self-Limiting Size Distribution of Supported Cobalt Nanoclusters at Room Temperature”, Phys. Rev. Lett., Vol 90, pp. 185506, May 2003.
Chapter 4 References
[1] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, “Growth and electronic properties of Au nanoclusters on thin-film Al2O3/NiAl(100) studied by scanning tunnelling microscopy and photoelectron spectroscopy with synchrotron radiation”, Surf. Sci., Vol 602, pp. 241-248, January 2008.
[2] G.R. Hu, C.S. Chao, H.W. Shiu, C.T. Wang, W.R. Lin, Y.J. Hsu, M.F. Luo, “Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100)”, Phys. Chem. Chem. Phys., Vol 13, pp. 3281-3290, January 2011.
[3] S. Gwo, C.P. Chou, C.L. Wu, Y.J. Ye, S.J. Tsai, W.C. Lin, M.T. Lin, “Self-Limiting Size Distribution of Supported Cobalt Nanoclusters at Room Temperature”, Phys. Rev. Lett., Vol 90, pp. 185506, May 2003.
[4] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, T.Y. Wang, “Growth of Co clusters on thin films Al2O3/NiAl(100)”, J. Chem. Phys., Vol 124, pp. 164709, April 2006.
[5] L. Óvári, L. Bugyi, Z. Majzik, A. Berkó, J. Kiss, “Surface Structure and Composition of Au-Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study”, J. Phys. Chem. C, Vol 112, pp. 18011-18016, October 2008.
[6] M.D. Morse, “Clusters of transition-metal atoms”, Chem. Rev., Vol 86, pp. 1049-1109, 1986.
[7] M. Bäumer, H.-J. Freund, “Metal deposits on well-ordered oxide films”, Prog. Surf. Sci., Vol 61, pp. 127-198, August 1999.
[8] L. Óvári, A. Berkó, N. Balázs, Z. Majzik, J. Kiss, “Formation of Rh-Au Core-Shell Nanoparticles on TiO2(110) Surface Studied by STM and LEIS”, Langmuir, Vol 26, pp. 2167-2175, November 2009.
[9] M. Heemeier, S. Stempel, Sh.K Shaikhutdinov, J. Libuda, M. Bäumer, R.J. Oldman, S.D. Jackson, H.-J Freund, “On the thermal stability of metal particles supported on a thin alumina film”, Surf. Sci., Vol 523, pp. 103-110, January 2003.
[10] T.W. Hansen, A.T. Delarive, S.R. Challa, A.K. Datye, “Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?”, Acc. Chem. Res., May 2013.
[11] 徐柏瑋(Hsu Powei), “RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl”, 國立中央大學(National Central University), Master thesis, January 2013.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明