博碩士論文 992202018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.231.228.109
姓名 錢遠鴻(Yuan-hung Chien)  查詢紙本館藏   畢業系所 物理學系
論文名稱 堆疊多層石墨烯之光電特性
(The optical and electrical properties of multilayer graphene)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們利用化學氣相沈積法成長高品質的單層石墨烯薄膜,並重覆轉印單層石墨烯以製成多層石墨烯薄膜,期望可以解決在一次成長多層石墨烯薄膜時,因層與層之間之相互作用所造成之光特性損失。並利用重複轉印的方式改善石墨烯薄膜的電特性。
製程上,我們使用化學汽相沈積法在銅箔上成長單層石墨烯,並利用光阻(PMMA)和濕蝕刻方法將石墨烯薄膜轉印到二氧化矽基板上。經過拉曼光譜(Raman Spectrum)量測,顯示G band和2D band的半高寬皆小於40cm-1,並且2D/G的訊號強度比值大於1.5。這顯示我們以CVD方法成長於銅箔上為單層的石墨烯薄膜,且經過濕蝕刻轉印後,單層石墨烯薄膜的結構保持完整。經由霍爾量測,轉印後之石墨烯薄膜的平均片電阻約為2000 ohm/sq,並且大多數的樣品片電阻均分布在2000 ohm/sq附近,這顯示樣品之成長以及轉印過程的穩定性。
在結構特性上,我們利用Raman Spectrum量測,顯示出直接成長之單層以及經過重複轉印之三層和五層的石墨烯薄膜之G band和2D band峰值並沒有相對位移,且半高寬及2D/G訊號強度的比值相似。2D band之訊號曲線保持左右對稱。這顯示層跟層之間並不存在交互作用力。在光性方面,重複轉印的多層石墨烯薄膜,在波長555nm處對光的吸收率約為3.1 %/層,在三層的情況下依然保持約90%的光穿透率。在電性方面,當層數低於三層時,石墨烯薄膜之片電阻降為單層片電阻的50%。當層數大於三層時,多層石墨烯薄膜之片電將接近高定向石墨(highly-oriented pyrolytic graphite, HOPG)的片電阻。
在此論文中,我們成功利用重覆轉印的方式製成確定層數的多層石墨烯。且將片電阻降低的同時維持光穿透性在90%以上。並得到光電特性的最佳化結果。
摘要(英) In this thesis, high quality monolayer graphene were grown on Cu foil by chemical vapor deposition, and we manufacture multilayer graphene by stacking monolayer graphene. The propose of stacking multilayer graphene is to obtain optimum condition both in optical and electrical properties.
According to the results of Raman spectrum measurement, the full width at half maximum of G band and 2D band peaks are both smaller than 40 cm-1 and the ratio of 2D/G is larger than 1.5, which means the transferred graphene is monolayer. The average sheet resistivity of transferred graphene, which is measured by Hall measurement system, are about 2000 ohm/sq.
For the optical and electrical properties of stacked multilayer graphene, the transmittance, Raman spectrum, and Hall measurement were taken. The Raman spectrum results shows that the peak positions of G and 2D band didn’t shift and the 2D/G ratio were almost the same between one and stacked multilayer graphene. In addition, no shoulders were observed in the 2D peak of Raman spectrum that means there should be no interactions between layers. In the optical transmittance results, the absorption of multilayer graphene is about 3.1%/layer at 555 nm wavelength. The transmittance of three layers graphene is about 90%. In electrical properties, the sheet resistivity of graphene were decreased to 50% and 75% with stacked layer number was two and three layers, respectively. When the layer number was increased more than five layers, the sheet resistivity of multilayer graphene was close to HOPG.
In the thesis, we successfully manufacture certain layers graphene by stacking monolayer graphene. The sheet resistivity of stacked graphene was decreased and the optical transmittance of stacked graphene was above 90%.
關鍵字(中) ★ 堆疊
★ 石墨烯
★ 多層
關鍵字(英) ★ Graphene
★ multilayer
★ stacked
論文目次 摘要 I
ABSTRACT III
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER 1. INTRODUCTION 1
1-2 THE METHOD OF MAKING GRAPHENE 2
1-2.1 Micro-mechanical cleavage 2
1-2.2 Graphitization of single crystal SiC 3
1-2.3 Chemical reduction of exfoliated graphite oxide layers 4
1-2.4 Growth on metal substrate 4
1-3 MOTIVATION 5
CHAPTER 2. FABRICATION OF GRAPHENE 13
2-1 CHEMICAL VAPOR DEPOSITION 13
2-2 THE PROCESS OF GROWING GRAPHENE BY CVD 14
2-3 THE TRANSFERRING PROCESS OF GRAPHENE 15
CHAPTER 3. OPTICAL AND ELECTRICAL PROPERTIES OF STACKED MULTILAYER GRAPHENE 22
3-1 STRUCTURE PROPERTIES OF STACKED MULTILAYER GRAPHENE 22
3-1.1 Theory of Raman spectroscopy 22
3-1.2 Raman spectroscopy system 22
3-1.3 Results 23
3-2 ELECTRICAL PROPERTIES OF STACKED MULTILAYER GRAPHENE 25
3-2.1 Theory of Hall effect 25
3-2.2 Hall measurement system 26
3-2.3 Results 27
3-3 OPTICAL PROPERTIES OF STACKED MULTILAYER GRAPHENE 28
3-3.1 Theory of transmittance 28
3-3.2 Transmittance spectrum system 29
3-3.3 Results 29
CHAPTER 4. CONCLUSIONS AND FUTURE WORKS 44
REFERENCE 46
參考文獻 [1] K.S. Novoselov, A.K.Geim, et al., “Electric Field Effect in Atomically Thin Carbon Films ”, Science 306, 666-669 (2004)
[2] A.K. Geim, and K.S. Novoselov, “The Rise of Graphene”, Nature Materials 6 (3), 183-191
[3] R.R. Nair, P. Blake, et al., “Fine Structure Constant Defines Visual Transparency of Graphene”, Science 320, 1308
[4] A.H. Castro Neto, et al., “The Electronic Properties of Graphene”, Rev. Mod. Phy., 81,1, 109-162 (2009)
[5] Yuanbo Zhang, Joshua P. Small, et al., “Fabrication and Electric –field-dependent Transport Measurements of Mesoscopic Graphite Devices”, Applied Physics Letters 86, 073104 (2005)
[6] C. Berger, Z.Song, et al., “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics”, J. Phys. Chem. B 2004, 108, 19912-19916
[7] P. Boehm, “Boehm’s 1961 isolation of graphene”, Graphene Times 2009, 12-07
[8] Sungin Park and Rodney S. Ruoff, “Chemical Methods for the Production of Graphenes”, Nat. Nanotechnol. 2009, 4, 217-224
[9] Slaven Garaj, William Hubbard, and J. A. Golovchenko, “Graphene Synthesis by Ion Implantation”, Appl. Phys. Lett. 97, 183103 (2010)
[10] Qingkai Yu, Jie Lian, et al., “Graphene Segregated on Ni Surfaces and Transferred to Insulators”, Appl. Phys. Lett. 93, 1131101 (2008)
[11] Alfonso Reina, Xiaoting Jia, et al., “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., 9, 1, 30-35 (2009)
[12] Xuesong Li, Weiwei Cai, et al., “Large-area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324, 1312 (2009)
[13] J. Hass, W. A. de Heer and E. H. Conrad, “ The Growth and Morphology of Epitaxial Multilayer Graphene”, J. Phys.: Condens, Matter 20, 323202 (2008)
[14] James D. Plummer et al. 原著, Silicon VLSI Technology, 初版, 羅正忠等譯, 半導體工程, 台灣培生教育, 台北市, 2002年9月
[15] Xuesong Li, et al., “ Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett. 9, 12, 4268-4272 (2009)
[16] Keun Soo Kim, et al., “Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes”, Nature 457, 706-710 (2009)
[17] Xuesong Li, et al., “ Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”, Nano Lett. 9, 12, 4259-4363 (2009)
[18] A. C. Ferrari, et al., “Raman Spectrum of Graphene and Graphene Layers”, PRL 97, 187401 (2006)
[19] A. K. Geim, “Graphene: Status and Prospects”, Science 324, 1530 (2009)
[20] 蔡淑慧, “拉曼光譜在奈米碳管檢測上之應用“, 奈米通訊 第十二卷第二期, 47-51
[21] Shaahin Amini, et al., “Growth of Large-area Graphene Films from Metal-carbon Melts”, J. Appl. Phys. 108, 094321 (2010)
[22] Sukang Bee, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology Vol.5, 574-578 (2010)
[23] Ivan Vlassiouk, et al., “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene”, ACS Nano 5(7), 6069-6076 (2011)
[24] Sun-Jung Byun, et al., “Graphenes Converted from Polymers”, J. Phys. Chem. Lett. 2, 493-497 (2011)
[25] Lei Liu and Zexiang Shen, “ Band gap engineering of graphene: A density functional theory study”, Appl. Phys. Lett. 95, 252104 (2009)
[26] F. Bonaccorso, et al., “ Graphene Photonics and optoelectronics”, Nature Photonics Vol.4, 611-622 (2010)
[27] V. G. Kravets, et al., “ Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove Peak in absorption”, Physical Review B 81, 155413 (2010)
[28] L. A. Falkovsky, “Optical properties of graphene” Journal of Physics: Conference Series 129 012004 (2008)
[29] Duhee, et al., “Interference effect on Raman spectrum of graphene on SiO2/Si” Physical Review B 80, 125422 (2009)
[30] Daniel R. Lenski and Michael S. Fuhrer, “Ramana and optical characterization of multilayer turbostratic graphene grown via chemicall vapor deposition”, J. Appl. Phys. 110, 013720 (2011)
[31] Johann Coraux, et al., “Growth of graphene on Ir(111)”, New J. Phys., 10, 093026 (2008)
[32] Peter W. Sutter, et al. “Epitaxial graphene on ruthenium”, Nat. Materials 7, 406-411 (2008)
[33] M. Lawrenz, et al., “Time-domain investigation of laser-induced diffusion of CO on a vicinal Pt(111) surface”, J. Phys. Rev. B 76(7), 075429 (2007)
指導教授 紀國鐘、李文獻
(G. C. Chi、W. H. Li)
審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明