博碩士論文 992202033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.145.111.183
姓名 王聖豪(Sheng-Hao Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
(Strain doping coupling dynamics of solid phase epitaxial regrowth formed by phosphorus implanted Si:C layer)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 雜質在假晶型碳矽合金對張力之熱穩定性影響
★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用量測被碳與磷離子佈植之矽晶片的反射率,來研究固態磊晶成長的動力學問題。為了達到高濃度摻雜,超過平衡溶解度的非平衡長晶方式,如固態磊晶成長,很常被使用在半導體製造中。在這篇論文裡,我們將深入探討不同的原子摻雜以及摻雜濃度對於磊晶成長速度的影響。我們發現在摻雜磷濃度大於一個臨界值以前,成長速度隨著磷濃度增加而增快。然而,成長速度在磷濃度超過此臨界值以,變得非常的緩慢。另外,隨著熱退火溫度的增高,此臨界值也隨著增高。由片電阻的量測中,我們發現在較高的熱退火實驗中,得到的片電阻較低,因此,我們認為
此臨界值就是此實驗試片的非平衡溶解度。我們認為,超過臨界值的成長速度驟降的現象與(111)晶面的形成有關。對於碳摻雜的影響,我們發現碳摻雜也會增加長晶的速度,這是由於碳引起的伸張應力而造成的,而且在成長過程中,伸張應力會不斷的累積,造成成長速度越來越快的趨勢。實驗中觀察到熱退火溫度越高,摻雜活化的程度也越高,這是因為原子受到高速度的長晶過程而被侷限的因素。而在低熱退火溫度的試片中,那些沒有溶到晶格中的摻雜物,則被推到表面區,並造成伸張應力的釋放。
摘要(英) We experimentally investigate the slid phase epitaxial regrowth (SPER) of phosphorus and carbon implanted silicon by time resolved reflectivity spectroscopy. The dopants activation and impurities incorporation far beyond the equilibrium solubility limit during SPER is a non-equilibrium process. The SPER rate as a function of impurities concentration was analyzed. Phosphorus enhanced SPER rate was found for phosphorus concentration below a critical value, [P]c, while the regrowth rate retarded severely once the phosphorus concentration is larger than [P]c. We attribute the value of [P]c to the non-equilibrium dopant solubility limit be correlating the increasing value of [P]c to the decreasing measured sheet resistance. We suggest that the retarded SPER rate for phosphorus concentration beyond [P]c is caused by the solubility limits and results in the (111) facet formation. We found that for boxlike carbon distribution, SPER rate is increasing gradually during the regrowth process. We attribute it to the accumulated strain during the regrowth process. The high activation level and strain was found in high temperature annealing regime because higher SPER rate results in more substituted toms by high solute trapping rate. The non-activated phosphorus was pushed out to the surface region which greatly deteriorate the activation level in the recrystallized layer. In this thesis, dynamical process of SPER are discussed in detail.
關鍵字(中) ★ 磷
★ 碳
★ 固態磊晶
★ 矽
★ 應力
★ 應變
關鍵字(英) ★ strain
★ phosphorus
★ silicon carbon
★ solid phase epitaxial regrowth
論文目次 1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Strained Si . . . . . . . . . . . . . . . . . . . .4
2.1.1 The generation of strain in Si . . . . . . . 4
2.1.2 Conduction band offset of strained Si . . . .6
2.2 Model of solid phase epitaxial regrowth . . . . . .7
2.2.1 The methods to grow the Si:C/Si . . . . . . .7
2.2.2 Reported models for solid phase epitaxial
regrowth . . . . . . . . . . . . . . . . . . 10
2.2.2.1 Bond rearrangement model . . . . . . 10
2.2.2.2 Interstitial-vacancy recombination
model . . . . . . . . . . . . . . . .13
2.2.2.3 Electronic processes at a/c interface
model . . . . . . . . . . . . . . . .17
2.2.3 Generalized Fermi Level Shifting model . . . 18
2.2.4 Activation strain tensor . . . . . . . . . . 20
3 Experimental setup and measurement . . . . . . . . . . 23
3.1 Samples preparation . . . . . . . . . . . . . . . . 23
3.2 Experimental setup . . . . . . . . . . . . . . . . .25
3.3 Measurement methods . . . . . . . . . . . . . . . . 26
3.3.1 Time resolved reflectivity (TRR) . . . . . . .26
3.3.2 Secondary ion mass spectrometry (SIMS) . . . .28
3.3.3 High resolution X-ray diffractometer (HRXRD) .30
3.3.4 Transmission electron microscopy (TEM) . . . .31
3.3.5 Four point probe . . . . . . . . . . . . . . .33
4 Results and discussion . . . . . . . . . . . . . . . . .35
4.1 Characteristics of time resolved reflectivity traces
. . . 35
4.2 Effect of strain and doping on SPER dynamics . . . .36
4.3 XRD analysis . . . . . . . . . . . . . . . . . . . .42
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 47
6 Bibliography . . . . . . . . . . . . . . . . . . . . . .49
參考文獻 [1] S. D. Kim, C. M. Park, and J. C. S. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS” IEEE
Trans. Electron Devices 49, 1748 (2002)
[2] S. N. Hong, G. A. Ruggles, J. J. Wortman, and M. C. ztrk, “Material and electrical properties of ultra-shallow p+ − n junctions formed by low-energy ion implantation and rapid thermal annealing” IEEE Trans. Electron Devices 38, 476 (1991)
[3] T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, and A. Carnera, “Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon” Nucl. Instrum. Meth. B 186, 287 (2002)
[4] S. Whelan, V. Privitera, M. Italia, G. Mannino, C. Bongiorno, C. Spinella, G. Fortunato, L. Mariucci, M. Stanizzi, and A. Mittiga, “Redistribution and electrical activation of ultralow energy implanted boron in silicon following laser annealing” J. Vac. Sci. Technol. B 20, 644 (2002)
[5] K. C. Ku, C. F. Nieh, J. Gong, L. P. Huang, Y. M. Sheu, C. C. Wang, C. H. Chen, H. Chang, L. T. Wang, T. L. Lee, S. C. Chen, and M. S. Liang, “Effects of germanium and carbon coimplants on phosphorus diffusion in silicon” Appl. Phys. Lett. 89, 112104 (2006)
[6] L. A. Edelman, S. Jin, K. S. Jones, R. G. Elliman, and L. M. Rubin, “Effect of carbon codoping on boron diffusion in amorphous silicon” Appl. Phys. Lett. 93, 072107 (2008)
[7] Z. Ye, Y. Kim, A. Zojaji, E. Sanchez, Y. Cho, M. Castle, and M. A. Foad, “A study of low energy phosphorus implantation and annealing in Si:C epitaxial films” Semicond. Sci. Technol. 22, 171 (2007)
[8] S. Ruffell, I. V. Mitchell, and P. J. Simpson, “Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation” J. Appl. Phys. 98, 083522 (2005)49
[9] S. M. Koh, G. S. Samudra, and Y. C. Yeo, “Carrier transport in strained N-channel field effect transistors with channel roximate silicon-carbon source/drain stressors” Appl. Phys. Lett. 97, 032111 (2010)
[10] S. M. Koh, X. Wang, K. Sekar, W. Krull G. S. Samudra, and Y. C. Yeo, “Silicon-carbon formed using cluster-carbon implant and laser-induced epitaxy for application as source/drain stressors in strained n-channel MOSFETs” J. Electrochem. Soc. 156, H361 (2009)
[11] S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon” Appl. Phys. Lett. 37, 719 (1980)
[12] W. Y. Woon, S. H. Wang, Y. T. Chuang, M. C. Chuang, and C. L. Chen, “Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth” Appl. Phys. Lett. 97, 141906 (2010)
[13] Y. T. Chuang, S. H. Wang, and W. Y. Woon, “Effect of impurities on thermal stability of pseudormorphically strained Si:C layer” Appl. Phys. Lett. 98, 141918 (2011)
[14] J. F. Sage, W. B.-Carter, and M. J. Aziz, “Morphological instability of growth fronts due to stress-induced mobility variations” Appl. Phys. Lett. 77, 516 (2000)
[15] C. Ortolland, P. Morin, C. Chaton, E. Mastromatteo, C. Populaire, S. Orain, F. Leverd, P. Stolk, F. Boeuf, and F. Arnaud, “Stress memorization technique (SMT) optimization for 45nm CMOS” VLSI 78, 2006
[16] E. R. Hsieh, and Steve S. Chung, “The proximity of the strain induced effect tot improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-efect transistors” Appl. Phys.
Lett. 96, 093501 (2010)
[17] H. Jorg Osten, “band-gap changes and band offsets for ternary Si1
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2011-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明