博碩士論文 992202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.85.214.0
姓名 李凡尼(Agus Rifani)  查詢紙本館藏   畢業系所 物理學系
論文名稱 金銅合金金屬叢集(N=38)的磁性性質研究
(Magnetism in 38-atom gold-copper clusters)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用第一原理的方法研究AunCu38-n.的結構和電子性質.首先,我們利用 [P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006)] 發展的演算法去找出合金叢集在溫度為零的最低能量結構.這個演算法使用的是Gupta勢能搭配基因演算法併能量谷跳躍法. 雖然此演算法的可信度在文獻被證實上非常高,但因為Gupta勢能是一個使用經驗法則得到近似方法,無法提供電子方面的性質.所以我們接著把上述得到的最低能量結構放到第一原理的軟體中作電子結構的後續計算.在電子結構部份,我們使用的方法為密度泛函理論,選用的是高斯型的基底組.結果發現初始結構因為加上了電子的影響會有構形上的扭曲變形. [P.J. Ballester and W.G. Richards, J. Comput. Chem. 28, 1711 (2007)] 發展出的超快構形識別技術可以幫助我們有效的區分出初始結構和因為電子所造成扭曲變形後的差異.這個差異反映並幫助我們理解電子在構形扭曲過程中所扮演的錯綜複雜角色.另外,電荷以及自旋電荷在叢集中的分佈以及自旋態密度的分析可以幫助我們理解並解釋某些叢集產生不尋常的淨磁矩發生的背後機制.此外,化學的分子點群理論成功的解釋某些高度對稱的結構產生淨磁矩的原因.
摘要(英) We present first-principles theoretical calculations of the structural and electronic properties of bimetallic clusters AunCu38-n. For the former, we first appeal to the lowest energy configurations of AunCu38-n (for different n) that we determined previously from an accurate and reliable optimization algorithm [P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006)] which was used in conjunction with an empirical many-body potential, whereas for the latter we use a linear combination of Gaussian-type orbitals within the Kohn-Sham density functional theory. The above lowest energy structures are input as initial ionic configurations and employed in the spin unrestricted density functional theory calculations. A thorough comparison between the ionic structures obtained from the latter and those initial ones from the optimization algorithm is further effected by the ultra-fast shape recognition technique [P.J. Ballester and W.G. Richards, J. Comput. Chem. 28, 1711 (2007)] widely applied in chemistry for structural characterization. The disparity in cluster geometry between these two sets of ionic structures sheds light on the intricate role of valence electrons in their spatial distribution on the atomic sites in clusters. This information on charge and spin density dispersions together with spin-polarized density of states unveil the mystery of the net magnetic moments which are predicted uncommonly in some of the clusters of AunCu38-n. An explanation is offered of this unexpected magnetism in the context of the symmetry of ionic structures.
關鍵字(中) ★ 金屬叢集
★ 磁性
關鍵字(英) ★ metallic cluster
★ Magnetic properties
論文目次 I. INTRODUCTION 1
II. THEORY 2
2.1. DENSITY FUNCTIONAL THEORY 2
III. RESULTS AND DISCUSSION 3
3.1. ATOMIC STRUCTURES 3
1.1. CHARGE DENSITY AND SPIN CHARGE DENSITY DISTRIBUTIONS 5
1.2. INTERPRETATION OF THE MAGNETIC MOMENTS 17
IV. CONCLUSION 24
ACKNOWLEDGMENTS 25
REFERENCES 25
參考文獻 1 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck and R.L. Johnston, J. Chem. Phys. 122, 194308 (2005).
2 G. Barcaro, A. Fortunelli, G. Rossi, F. Nita and R. Ferrando, J. Phys. Chem. B 110, 23197 (2006).
3 P.J. Hsu and S.K. Lai, J. Chem. Phys. 124, 044711 (2006). Also references cited therein.
4 D.C. Rodridues, , A. M. Nascimento, H. A. Duarte, J. C. Belchior, Chem. Phys. 349, 91 (2008).
5 X. Wu, W.S. Cai, X.G. Shao, J. Comput. Chem. 30, 1992 (2009).
6 D.T. Tran and R.L. Johnston, Phys. Chem. Chem. Phys. 11, 10340 (2009).
7 G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto and R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004).
8 D. Bochicchio and R. Ferrando, Nano Lett. 10, 4211 (2010).
9 M. Pereiro, D. Baldomir and J.E. Arias, Phys. Rev. A 75, 063204 (2007).
10 B. Assadollahzadeh, P.R. Bunker and P. Schwerdtfeger, Chem. Phys. Lett. 451, 262 (2008); B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009).
11 G. Guzman-Ramirez, F. Aguilera-Granja and J. Robes, Eur. Phys. J. D 57, 49 (2010).
12 D.E. Jiang and M. Walter, Phys. Rev. B 84, 193402 (2011).
13 I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, Phys. Rev. Lett. 81, 1600 (1998); Eur. Phys. J. D 24, 105 (2003).
14 R.J. Magyar, V Mujica, M. Marquez and C. Gonzalez, Phys. Rev. B 75, 144421 (2007).
15 B.C. Curley, G. Rossi, R. Ferrando and R.L. Johnston, Eur. Phys. J. D 43, 53 (2007).
16 T.W. Tsung, P.J. Hsu and S.K. Lai, Phys. Rev. E, to be submitted (2012).
17 P.J. Ballester and W.G. Richards, J. Comput. Chem., 28, 1711 (2007).
18 A.M. Koster, P. Calaminici, M.E. Casida, V.D. Dominguez, R. Flores-Moreno, G. Geudt-oner, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J.M. del Campo, J.U. Reveles, A. Vela, B. Zuniga, D.R. Salahub, deMon2k version 3.0 (2010).
19 C.C. Lovallo, M. Klobukowski, Int. J. Quant. Chem. 90, 1099 (2002); C.C. Lovallo, M. Klobukowski, J. Comp. Chem. 24, 1009 (2003). Note that we use contracted Gaussian-type function sets with the third-order Douglas-Kroll approximation for scalar relativistic that incorporates the Darwin and mass velocity terms for Cu.
20 H. Mori, K Ueno-Noto, Y, Osanai, T. Noro, T. Fujiwara, M. Klobukowski, E. Miyoshi, Chem. Phys. Lett. 476, 317 (2009). Note that we use contracted Gaussian-type function sets with the third-order Douglas-Kroll approximation for relativistic effect [Y. Osanai, T. Noro, E. Miyoshi, M. Sekiya, T. Koga, J. Chem. Phys. 120, 6408 (2004)] for Au.
21 In the context of the auxiliary density functional theory to avoid the N4 scaling Coulomb repulsion energy, we used GEN-A2 auxiliary function set for all atom [P. Calaminici, F. Janetzko, A.M. Koster, R. Mejia-Olvera, B. Zuniga-Gutierrez, J. Chem. Phys. 126, 044108 (2007)].
22 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); J.P. Perdew, K. Burke and Y. Wang, Phys. Rev. B 54, 16533 (1996).
23 K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV (Van Nostrand, New York, 1979).
24 G.A. Bishea and M.D. Morse, J. Chem. Phys. 95, 5646 (1991).
25 R. Wesendrup, T. Hunt, and P. Schwerdtfeger, J. Chem. Phys. 112, 9356 (2000); J.J. Guo, C.F. Wei, J.X. Yang and D. Die, Chin. Phys. B 19,113601 (2010).
26 P.O. Lowdin, J. Chem. Phys. 18, 365 (1950).
27 R. P. Gupta, Phys. Rev. B 23, 6265 (1981).
28 F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
29 We should emphasize that the high structural similarity for the majority of clusters between the PTMBHPGA and DFTM is merely a reliability check of the Gupta potential and does not, however, imply that the relaxed structures of AunCu38-n in DFTM are global minima at the high-level of all-electron DFT calculations. This issue on the use of empirical potential has been discussed also in recent communications for AgnCu40-n [2] and for silver-copper clusters of a much larger size having anti-Mackay icosahedra of 45, 127, 279, 521,..,atoms which correspond to compositions Ag32Cu13, Ag72Cu55, Ag132Cu147, Ag212Cu309,..,respectively [8]. The high-level DFT calculations, in principle, can be carried out for pure metallic clusters [10-12], but is nonetheless a formidable task when the same strategy is applied to BCs of the size considered here.
30 B.I. Dunlap, Phys. Rev. A 41, 5691 (1990).
31 R. Dupree and C.J. Ford, Phys. Rev. B 8, 1780 (1972).
32 F. Albert Cotton, Chemical Applications of Group Theory, 3rd ed., John Wiley & Sons, New York,1990.
33 The Amsterdam Density Functional (ADF) software is described in the web site: http://www.scm.com/Doc/Doc2010/Background/References/page4.html.
34 In the event that the point group theory can not identify the symmetry of the cluster structure, the ADF method would fail and we no longer be able to examine further the structure of the energy levels obtained in DFTM.
指導教授 賴山強(San-Kiong Lai) 審核日期 2012-5-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明