博碩士論文 992202604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.145.119.199
姓名 艾利南(Rizal Arifin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
(Growth of layered graphene and the thermal stability of multilayered graphene on silicon carbide substrate by molecular dynamics simulation)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用了分子動力學模擬和模擬退火方法來研究石墨烯的磊晶成長過程和石墨 烯
納米帶(6H - SiC(0001))的熱穩定性質。為了理解其背後機制,我們使用了兩種 勢 能 作 為 我 們 的 參 數 , 即 目 前 廣 泛 被 應 用 的 Tersoff 勢 能 [Phys 。 Rev 。 B 39 , 5566 ( 1989 ) ] , 以 及 由 Erhart 和 Albe 提 出 的 Tersoff 勢 能 修 正 的 版 本 [Phys。 Rev。 B 71,035211-1(2005)]。我們發現,一般狀況下第二個版本的勢能 在預測石墨烯 開始成長在基板上的溫 ,會和實驗結果比較一致。我們分析了石墨 度 烯 的碳原子平均鍵距,徑向分布函數,束縛能以及基板和石墨烯 的間距來確認模擬 結果的合理性。石墨烯
結構出現的溫 1325K 和實驗上預測的溫度非常一致。至於 度 熱穩定度方面,我們分析了無限大石墨 烯 層在靠近 SiC 基板的一些表面型態學上 的特性,和目前文獻上的結果是一致的。最後,我們得到了一個臨界退火溫度 , 2000K。如果系統溫度低於臨界溫度,石墨緩衝層會比較穩定。如果大於這個溫度, 緩衝層開始會有從基板向上傾斜的趨勢。
摘要(英) The molecular dynamics simulation and simulated annealing method were applied to study
the growth process of graphene and the thermal stability of layered graphene nanoribbons on
6H-SiC(0001) substrate. With an intention to understand the mechanisms that govern these
panoramas, we tested two empirical potentials, i.e. the widely used Tersoff potential [Phys.
Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe
[Phys. Rev. B 71, 035211-1 (2005)]. We found that the modified Tersoff potential
communicated by Erhart and Albe is generally more banausic for growing layered graphene on
6H-SiC substrate for the annealing temperature at which the graphene structure comes into
view is very close to that observed in epitaxially grown graphene experiments. We evaluate our
grown layered graphene by checking the reasonableness of the average carbon-carbon bond-
length, pair correlation function, binding energy and also comparing with the experimentally
grown epitaxial graphene the distances among the overlaid layers of graphene and substrate
surface. The annealing temperature we obtained at 1325 K at which the graphitic structure just
comes into view is reasonably close to the experimentally observed pit formation. On the
thermal stability of layered graphene, the characteristics of the surface morphology of an
infinite graphene sheet that we positioned near SiC substrate are consistent with other
simulation works. Most importantly we obtained a threshold annealing temperature at around
2000 K below which the structural behavior of the carbon buffer layer is thermally stable and
above which one sees the graphitic structures show tendency to slant up from the substrate.
關鍵字(中) ★ 石墨烯
★ 分子動力學模擬
關鍵字(英) ★ graphene
★ molecular dynamics simulation
論文目次 The molecular dynamics simulation and simulated annealing method were applied to study the growth process of graphene and the thermal stability of layered graphene nanoribbons on 6H-SiC(0001) substrate. With an intention to understand the mechanisms that govern these panoramas, we tested two empirical potentials, i.e. the widely used Tersoff potential [Phys. Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe Phys. Rev. B 71, 035211-1 (2005)]. We found that the modified Tersoff potential communicated by Erhart and Albe is generally more banausic for growing layered graphene on 6H-SiC substrate for the annealing temperature at which the graphene structure comes into view is very close to that observed in epitaxially grown graphene experiments. We evaluate our grown layered graphene by checking the reasonableness of the average carbon-carbon bond-
length, pair correlation function, binding energy and also comparing with the experimentally grown epitaxial graphene the distances among the overlaid layers of graphene and substrate surface. The annealing temperature we obtained at 1325 K at which the graphitic structure just comes into view is reasonably close to the experimentally observed pit formation. On the thermal stability of layered graphene, the characteristics of the surface morphology of an infinite graphene sheet that we positioned near SiC substrate are consistent with other simulation works. Most importantly we obtained a threshold annealing temperature at around
2000 K below which the structural behavior of the carbon buffer layer is thermally stable and above which one sees the graphitic structures show tendency to slant up from the substrate.
參考文獻 [1 ] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
[2 ] Y. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature 438, 201 (2005).
[3 ] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).
[4 ] C.L. Kane, Nature 438, 168 (2005).
[5 ] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, PNAS 102, 10451 (2005).
[6 ] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8, 203 (2009).
[7 ] S.V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
[8 ] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau Nano Lett. 8, 902 (2008).
[9 ] S. Ghosh, D.L. Nika, E.P. Pokatilov1 and A.A. Balandin, New J. Phys. 11, 095012 (2009).
[10] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).
[11] M.M. Shokrieh and R. Rafiee, Mat. Design 31, 790 (2010).
[12] C. Li, T.A. Chou, Int. J. Solid Struct. 40, 2487 (2003).
[13] G.V. Lier, C.V. Alsenoy, V.V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
[14] K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, Phys. Rev. B 64, 235406 (2001).
[15] J.R. Xiao, B.A. Gama, and Jr. J.W. Gillespie, Int. J. Solid Struct. 42, 3075 (2005).
[16] C.D. Reddy, S. Rajendran, and K.M. Liew, Int. J. Nanosci. 4, 631 (2005).
[17] Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang, Nature, 459, 820 (2009).
[18] A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).
[19] F.N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
[20] Z. Lee, K.J. Jeon, A. Dato, R. Erni, T.J. Richardson, M. Frenklach, and V. Radmilovic, Nano Lett. 9, 3365 (2009).
[21] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone, Nature Nanotech. 4, 861 (2009).
[22] S.M. Paek, E. Yoo, and I. Honma, Nano Lett. 9, 72 (2009).
[23] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu, Acs Nano 3, 907 (2009).
[24] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).
[25] P. Ball, Phys. World 23, 24 (2010).
[26] Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
[27] A. J. Van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).
[28] I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
[29] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
[30] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007).
[31] J. B. Hannon and R. M. Tromp, Phys. Rev. B 77, 241404R (2008).
[32] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. StJpniewski, and J. M. Baranowski, J. Appl. Phys. 105, 023503 (2009).
[33] Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert, and L. Li, Phys. Rev. Lett, 105, 085502 (2010).
[34] S.W. Poon, W. Chen, Andrew T. S. Wee and E.S. Tok, Phys. Chem. Chem. Phys. 12, 13522 (2010).
[35] C. Tang, L. Meng, H. Xiao, and J. Zhong, J. Appl. Phys. 103, 063505 (2008).
[36] C. Lampin, C. Priester, C. Krzeminski, and L. Magaud, J. Appl. Phys. 107, 103514 (2010).
[37] C. Tang, L. Meng, L. Sun, K. Zhang, and J. Zhong, J. Appl. Phys. 104, 113536 (2008).
[38] J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).
[39] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[40] J. Tersoff, Phys. Rev. B 38, 9902 (1988).
[41] J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
[42] J. Tersoff, Phys. Rev. B 39, 5566 (1989).
[43] P. Erhart and K. Albe, Phys. Rev. B 71, 035211-1 (2005).
[44] S. Reich, J. Maultzsch and C. Thomsen, Phys. Rev. B 66, 035412 (2002).
[45] C. K. Gan and D.J. Srolovitz, Phys. Rev. B 81, 125445 (2010).
[46] LAMMPS code, http://lammps.sandia.gov.
[47] Pensl, G. et.al., SiC Material Properties, International Journal of High Speed Electronics and Systems, Vol. 15, No. 4 (2005) 705-745, (World Scientific, 2005).
[48] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
[49] F. Varchon, F. Mallet, J.Y. Veuillen and L. Magaud, Phys. Rev. B 77, 235412 (2008).
[50] Y. Lifshitz, G. D. Lempert, and E. Grossmann, Phys. Rev. Lett. 72, 2753 (1994).
[51] R. Haerte, A. Baldereschi, and G. Galli. J. Non-Cryst. Solids 266-269, 740 (2000).
[52] D. Qian, W. K. Liu, S. Subramoney, and R. S. Ruoff, J. Nanosci. Nanotech. 3, 185 (2003).
[53] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
[54] L.A. Girifalco and R.A. Lad, J. Chem. Phys. 25, 693 (1956).
[55] A. Ito and H. Nakamura, Commun. Comput. Phys. 4, 592 (2008).
[56] D.W. Brenner, O. A Shenderova, J. A. Harrison, S.J. Stuart, B. Ni and S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2003).
指導教授 賴山強(San-kiong Lai) 審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明