摘要(英) |
The understanding of micro-organism is important in many scientific disciplines such as biology, medical science and engineer. Some recent experiments show that the microscopic molecular motors contribute to the cell locomotion and intracellular transportation. Bacterial flagellar motor is one of the most powerful molecular motor we have known. It can propel the cell up to the speed of tenth of the cell length per second. Therefore, the bacterial cells can be viewed as self-propelled particles. The collective motion of high density cells shows many interesting behaviors such as swarming.
Vibrio alginolyticus is a marine bacterium that has dual flagellar motor system, polar and lateral flagellar motors. The exact biological advantage of dual flagellar motor system is unknown. Here we present this investigation of the dual flagellar motor system including single cell speed and collective swarm measurements. We obtained three different strains of Vibrio alginolyticus, 138-2 (wild-type), VIO5 (polar+, lateral-), and YM19 (polar-, lateral+) for our investigation. We use Particle Imaging Velocimetry (PIV) to calculate the bacterial speed in high density. We also develop a micro-fluid flow-field measurement of bacteria.
|
參考文獻 |
[1]. Robert Belas, Melvin Simon, and Michael Silverman. 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol .167. 210-218
[2]. Ikuro Kawagishi, Yukiyo Maekawa, Tatsuo Atsumi, Michio Homma, and Yasuo Imae. 1995. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolitycus. J. Bacteriol. 178. 5158–5160
[3]. Sumio Shinoda, Keinosuke Okamoto. 1977. Formation and Function of Vibrio parahaemolyticus Lateral Flagella. J. Bacteriol. 129. 1266-1271
[4]. Linda R Mc.Carter. 1995. Genetic and Molecular Characterization of the Polar Flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177. 1595–1609
[5]. Einar Leifson, et al. 1964. Motile Marine Bacteria. J. Bacteriol. 87. 652-666
[6]. Rasika M.Harshey. 2003. Bacterial Motility on a Surface: Many Ways to a Common Goal. J.Ann. Rev. Micr. 57. 249-273
[7]. Nicholas C. Darnton, Linda Turner, Svetlana Rojevsky, and Howard C. Berg. 2010. Dynamics of Bacterial Swarming. Biophys. J. 98. 2082–2090
[8]. Tohru Minamino, Katsumi Imada and Keiichi Namba. 2008. Molecular motors of the bacterial flagella. Sci. Dir. 18. 693–701
[9]. Hiroyuki Terashima, Seiji Kojima, and Michio Homma. 2008. Flagellar Motility in Bacteria: Structure and Function of Flagellar Motor. Int. Rev. Cell and Mol. Biol. 270. 39-85
[10]. Yoshiyuki Sowa and Richard M. Berry. 2008. Bacterial Flagellar Motor. Quart. Rev. Biophys. 41. 103-132
[11]. Kousuke Nogawa, Masaru Kojima, Masahiro Nakajima, Seiji Kojima, Michio Homma, Toshio Fukuda. 2009. Rotational speed control of Na +-driven flagellar Motor by Dual Pipettes. IEEE Trans. on Nano Bioscience. 8. 341-348
[12]. Kazumasa Muramoto, Ikuro Kawagishi, Seishi Kudo, Yukio Magariyama, Yasuo Imae, and Michio Homma. 1995. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolitycus. J. Mol. Biol. 251. 50-58
[13]. Yukako Asai, Ikuro Kawagishi, R.Elizabeth Socket and Michio Homma. 2000. Coupling Ion Specificity of Chimeras between H+- and Na+- Driven Motor Protein MotB and PomB in Vibrio polar flagella. The EMBO J. 19 . 3639-3648
[14]. Yukako Asai, Ikuro Kawagishi, R. Elizabeth Sockett, and Michio Homma. 1999. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. J. Bacteriol. 181. 6332–6338
[15]. Toshiharu Yakushi, Masaru Kojima, and Michio Homma. 2004. Isolation of Vibrio alginolitycus sodium-driven flagellar motor complex composed of PomA and PomB solubilized by sucrose monocaprate. Microbiol. 150. 911-920.
[16]. Tomohiro Yorimitsu, Ken Sato, Yukako Asai, Ikuro Kawagishi, And Michio Homma. 1999. Functional Interaction between PomA and PomB, the Na+-Driven Flagellar Motor Components of Vibrio. J. Bacteriol. 181. 5103–5106
[17]. Hiroyuki Terashima, Masafumi Koike, Seiji Kojima, and Michio Homma. 2010. The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor. J. Bacteriol. 192. 5609–5615
[18]. Tomohiro Yorimitsu, Michio Homma. 2001. Na+-driven flagellar motor of vibrio. Biocim. et Biophy. Acta .1505. 82-93.
[19]. Seiji Kojima, Akari Shinohara, Hiroyuki Terashima, Toshiharu Yakushi, ayuko Sakuma, Michio Homma, Keiichi Namba, and Katsumi Imada. 2008. Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl. Acad. Sci. U S A. 105.7696–7701.
[20]. Hiroyuki Terashima, Masamufi koike, Seiji Kojima and Michio Homma. 2010. The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio alginolitycus motor. J. Bacteriol. 192. 5609–5615
[21]. Howard C. Berg. 2000. Constraints on models for the flagellar rotary motor. Roy. Soc. 355. 503-509
[22]. Howard C. Berg. 2003. The Rotary Motor Of Bacterial Flagella. Ann. Rev. Biochem. 72.19–54
[23]. Susan M. Butler & Andrew Camilli. 2005. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3. 611-620.
|