博碩士論文 992202608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.206.48.142
姓名 米海德(Muhammad Usman)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鍶金屬有機骨架化合物之介電與光學性質研究與應用
(Dielectric and Optical Investigation of Strontium-Based Metal–Organic Frameworks for Microelectronics Applications)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2019-12-10以後開放)
摘要(中) 本研究以金屬鍶鹽和羧酸有機配子反應,合成一系列金屬有機骨架化合物,並研究其介電性質和光物理特性。化合物{[Sr2(1,3-bdc)2(H2O)2]•H2O}n (1) 與 {[Sr(ntc)(H2O)2]•H2O}n (4)為二維結構,均為單斜晶系,其空間群分別為C2/c 與 P21/c。而化合物 [Sr(Hbtc)(H2O)]n (2) 為二維結構,以三個配位羧酸基Hbtc2– 與鍶離子建構成三維化合物 {[Sr(H2btc)2(MeOH)(H2O)2]•2H2O}n (3)。化合物1在移除極性客分子之後,顯現低介電性質 (κ = 2.4)。此外化合物1移除客分子之後仍保留其結晶性,熱穩定性高達420 °C。低介電性與良好熱穩定性使化合物1具有高潛力之積體電路層間介電層材料 (ILD)。本研究對金屬有機骨架(low-κ MOFs)材料低介電性質量測,配合文獻報告之理論計算及元件製備等之研究顯示低介電性質金屬有機骨架材料 (low-κ MOFs)卻有潛力成為積體電路層間介電層材料(ILD)。化合物2經過理論計算與實驗量測確認有顯著半導體特性。在室溫交流電導常數、相對介電常數和光致發光光譜證明化合物2擁有1.94 eV能階帶隙,與其他常用半導體材料如MoS2, CdSe, CdTe, ZnTe and GaP等性質相近。這是第一份鍶金屬有機骨架應用於半導體材料之結果,有很大的意義。化合物3於藍色光區有寬的發光帶,其Commission International ed’Eclairage (CIE) 座標為 (0.196, 0.191) 。這種藍色光致發光是由於配位基的發光、π–π堆疊交互作用與電荷轉移機制所貢獻。在開發固態白光發光元件方面,藍光超分子是非常有潛力的。應用光致發光光譜概念,本論文研究接著設計白色發光材料,實驗發現二維鍶金屬有機骨架 {[Sr(ntc)(H2O)2]•H2O}n (4) 化合物為優益白光發光材
料,其Commission International ed’Eclairage (CIE) 座標為 (0.336; 0.383) 其對應之色溫 (color temperature) 為5389 K。這種白色光致發光是由於配位基之π–π堆疊交互作用與電荷轉移機制所貢獻。鍶金屬有機骨架化合物3和4之設計開發對高效節能固態照明材料之研究提供新的方向。
摘要(英) In this thesis, a series of metal–organic frameworks (MOFs) and a supramolecular compound were synthesized by reacting carboxylate group-containing ligands with a strontium metal salt and their dielectric and optical behavior were investigated. Compounds {[Sr2(1,3-bdc)2(H2O)2]•H2O}n (1) and {[Sr(ntc)(H2O)2]•H2O}n (4) adopt 2D layered structures with a monoclinic C2/c and P21/c space groups, respectively. While the 2D layers of compound [Sr(Hbtc)(H2O)]n (2) are extended into a 3D network through a third carboxylate group of an Hbtc2– ligand. Compound {[Sr(H2btc)2(MeOH)(H2O)2]•2H2O}n (3) is a supramolecular compound that forms an extended structure via exemplary hydrogen-bonding with the guest molecules. Compound 1 exhibited significantly low dielectric behavior (κ = 2.4) upon the removal of its polar guest molecules. In addition, the dehydrated compound 1 retained its crystalline morphology and showed a high thermal stability at temperatures of up to 420 °C. Such a low dielectric constant with good thermal stability and low leakage current suggests that it might be useful as an interlayer dielectric (ILD) in integrated circuits. We also highlighted an initial study on low-κ MOFs and categorized the research on MOFs as an ILD into three major areas, 1) theoretical calculations, 2) fundamental properties, and 3) device integration. The highlighted results will trigger research and innovation on MOFs as ILDs in terms of providing electronic devices incorporating MOFs. Compound 2 exhibits remarkable semiconducting behaviour as evidenced by theoretical calculations and experimental measurements. Near room temperature ac conductivity, relative permittivity, and photoluminescence spectrum provide strong proof that compound 2 owns a band gap of 1.94 eV, which is comparable with other commonly used semiconducting materials e.g. MoS2, CdSe, CdTe, ZnTe and GaP etc. This first report on Sr-based MOF as a semiconductor promises to pave the way for further studies in semiconducting MOFs with interesting potential applications in
optoelectronic devices. Compound 3 exhibits remarkable broad band photoluminescence spectra with a blue light emission with Commission International ed’Eclairage (CIE) coordinates at (0.196, 0.191). Such broad photoluminescence spectrum for blue light is due to the ligand-based emission, raised by its π–π stacking interactions and charge transfer mechanisms that are contributed by the crystal structure of 3. The design of a blue emitting supramolecular network is very influential for developing white light emitting devices for solid-state lighting applications. Utilizing the concept of producing photoluminescence spectra over a wide range, we are able to design an intrinsic white light emitting material (compound 4). The two dimensional strontium-based metal–organic framework {[Sr(ntc)(H2O)2]•H2O}n (4) shows a remarkable intrinsic white light emission photoluminescence with Commission International ed’Eclairage (CIE) coordinates at 0.336; 0.383) with a color temperature around 5389 K. Such a broad photoluminescence spectrum for white light is due to the ligand-based emission arising from the contribution of its strong π–π stacking interactions and charge transfer mechanism. The design of these Sr-based compounds 3 and 4 promise to open up new perspectives for developing high-performance energy-saving solid-state lighting materials.
關鍵字(中) ★ 介電常數
★ 金屬有機骨架(Metal–Organic Framework, MOFs)
★ 光致發光
★ 鍶
★ 放射白光
關鍵字(英) ★ Dielectric Constant
★ Metal–Organic Framework
★ Photoluminescence
★ Strontium
★ White-light Emission
論文目次 摘要 …………………………………………………………………………………..……….. VII
Abstract ………………………………………………………………………………………… IX
Acknowledgement ……………………………………………………………………………... XI
Figure Catalog ...……………………………………………………………………………… XIV
Table Catalog …………………………………………………………………………….…... XIX
Chapter 1. Introduction ………………………………………………………………………….. 1
1.1 Background …………………………………………………………………………….... 1
1.2 Self-assembly of metal–organic frameworks (MOFs) …………………………………… 3
1.3 Applications of MOFs in microelectronics ……………………………………………… 8
1.4 Low-κ MOFs ……………………………………………………………………………... 8
1.4.1 Introduction of dielectric materials ……………………………………………….... 8
1.4.2 Application of dielectric materials ………………………………………………... 13
1.4.3 Dielectric properties of MOFs …………………………………………………….. 17
1.5 MOFs as interlayer dielectric …………………………………………………………... 20
1.6 MOFs as semiconductor ………………………………………………………………… 21
1.6.1 Introduction to semiconductor materials ………………………………………….. 21
1.6.2 MOFs as semiconductors …………………………………………………………. 25
1.7 MOFs as luminescent materials ………………………………………………………… 27
1.7.1 Introduction to luminescence ……………………………………………………... 27
1.7.2 Luminescent properties of MOFs …………………………………………………. 29
1.7.3 White light emitting MOFs ……………………………………………………….. 36
1.8 Research motivation …………………………………………………………………….. 39
1.9 References ……………………………………………………………………………… 40
Chapter 2 Low-κ Sr-based MOF ……………………………………………………………….. 48
2.1 Introduction …………………………………………………………………………….. 48
2.2 Experimental Section …………………………………………………………………... 49
2.3. Results and Discussion ……………………………………………………………..….. 53
2.4 Conclusion .…………………………………………….……………………………….. 63
2.5 References ……………………………………..……………………………………….. 64
Chapter 3 MOF as Interlayer Dielectrics: Highlights …………………………………………… 66
3.1 Theoretical study ……………………………………………………………………….. 67
3.2 Fundamental dielectric properties ……………………………………………………… 68
3.3 Device integration ……………………………………………………………………… 70
3.4 Conclusion …..………………………………………………………………………….. 70
3.5 References …..………………………………………………………………………….. 71
Chapter 4 Sr-Based Metal–Organic Framework as a Semiconductor ………………………….. 74
4.1 Introduction …………………………………………………………………………….. 74
4.2 Experimental Section …………………………………………………………………… 74
4.3. Results and Discussion …………………………………………………………………. 77
4.4 Conclusion …..………………………………………………………………………….. 88
4.5 References ..…………………………………………………………………………….. 89
Chapter 5 Broadband Emission of a Sr-Based Supramolecular Network ………………...…….. 92
5.1 Introduction …………………………………………………………………………….. 92
5.2 Experimental Section …………………………………………………………………… 93
5.3. Results and Discussion …………………………………………………………………. 95
5.4 Conclusion …..…………………………………………………………………...……. 103
5.5 References …..………………………………………………………………………… 104
Chapter 6 White Light Emission of a Sr-Based MOF ……………………………………...… 106
6.1 Introduction …………………………………………………………………………… 106
6.2 Experimental Section ………………………………………………………….………. 107
6.3. Results and Discussion ………...…………………………………………………….... 109
6.4 Conclusion …..………………………………………………………………………… 115
6.5 References ……………………..……………………………………………………… 116
Chapter 7 Conclusion …………………………………………………………………………. 118
Addendum I: Crystal Data and Structure Refinement ……………………………………...… 120

參考文獻 1.8 References
1. N. Bloembergen, Handbook of advanced electronic and photonic materials and devices, Academic Press, 2001.
2. J. A. McCleverty, 2 highlights in inorganic chemistry over the last 100 years, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2004,100, 3–13.
3. M. D. Croitoru, A. A. Shanenko and F. M. Peeters, Complex phenomena in nanoscale systems, Springer Netherlands, 2009.
4. J. A. Rogers, T. Someya and Y. Huang, Materials and mechanics for stretchable electronics, Science, 2010, 327, 1603–1607.
5. A. Facchetti, Organic semiconductors: Made to order, Nat. Mater., 2013, 12, 598–600.
6. R. F. Service, Outlook brightens for plastic solar cells, Science, 2011, 332, 293.
7. W. S. Roelofs, M. J. Spijkman, S. G. Mathijssen, R. A. Janssen, D. M. de Leeuw and M. Kemerink, Fundamental limitations for electroluminescence in organic dual-gate field-effect transistors, Adv. Mater., 2014, 26, 4450–4455.
8. H. C. Zhou, J. R. Long and O. M. Yaghi, Introduction to metal–organic frameworks, Chem. Rev., 2012, 112, 673–674.
9. H. C. Zhou and S. Kitagawa, Metal–organic frameworks (MOFs), Chem. Soc. Rev., 2014, 43, 5415–5418.
10. M. D. Allendorf, A. Schwartzberg, V. Stavila and A. A. Talin, A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions, Chem. Eur. J., 2011, 17, 11372–11388.
11. J. M. Lehn, Toward self-organization and complex matter, Science 2002, 295, 2400–2403.
12. H. Li, M. Eddaoudi, M. O′Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework, Nature, 1999, 402, 276–279.
13. W. Lu, Z. Wei, Z. Y. Gu, T. F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch and H. C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design, Chem. Soc. Rev., 2014, 43, 5561–5593.
14. P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp and O. K. Farha, Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement, Chem. Soc. Rev., 2014, 43, 5896–5912.
15. K. K. Tanabe and S. M. Cohen, Postsynthetic modification of metal–organic frameworks--a progress report, Chem. Soc. Rev., 2011, 40, 498–519.
16. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin and J. T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, J. Am. Chem. Soc., 2012, 134, 15016–15021.
17. N. Park, K. Choi, J. Hwang, D. W. Kim, D. O. Kim and J. Ihm, Progress on first-principles-based materials design for hydrogen storage, Proc. Natl. Acad. Sci. USA, 2012, 109, 19893–19899.
18. C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk and G. Férey, Role of solvent-host interactions that lead to very large swelling of hybrid frameworks, Science, 2007, 315, 1828–1831.
19. G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R. G. Xiong and S. Gao, Coexistence of magnetic and electric orderings in the metal–formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc., 2011, 133, 14948–14951.
20. L. Wang, Y. A. Li, F. Yang, Q. K. Liu, J. P. Ma and Y. B. Dong, Cd(II)-MOF: adsorption, separation, and guest–dependent luminescence for monohalobenzenes, Inorg. Chem., 2014, 53, 9087–9094.
21. S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer and P. H. Townsend, Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect, Adv. Mater., 2000, 12, 1769–1778.
22. G. E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff, {IEEE} J. Solid-State Circuits, 2006, 11, 33–35.
23. D. Shamiryan, T. Abell, F. Iacopi and K. Maex, Low-κ dielectric materials, Mater. Today, 2004, 7, 34–39.
24. P. A. Kohl, Low–dielectric constant insulators for future integrated circuits and packages, Annu. Rev. Chem. Biomol. Eng., 2011, 2, 379–401.
25. S. W. King, Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects, ECS J. Solid State Sci. Technol., 2014, 4, N3029–N3047.
26. W. Volksen, R. D. Miller and G. Dubois, Low dielectric constant materials, Chem. Rev., 2009, 110, 56–110.
27. B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Perovic and G. A. Ozin, Materials chemistry for low-κ materials, Mater. Today, 2006, 9, 22–31.
28. J. P. G. S. J. Martin, E. O. S. I. Michael E. Mills, and and P. H. Townsend, development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect, Adv. Mater., 2000, 12, 1769.
29. A. Grill and V. Patel, Ultralow-κ dielectrics prepared by plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 2001, 79, 803–805.
30. Z. L. Shuang Li, Dora Medina, Christopher Lew, and Yushan Yan, Organic–functionalized pure-silica-zeolite mfi low-κ films, Chem. Mater., 2005, 17, 1851.
31. H. Y. Yanjun Ma, J. Guo, C. Sathe, A. Agui, and J. Nordgren, Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films, Appl. Phys. Lett., 1998, 72, 3353.
32. H.-C. Liu, W.-C. Su and Y.-L. Liu, Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission, J. Mater. Chem., 2011, 21, 7182.
33. T. M. Hermans, J. Choi, B. G. G. Lohmeijer, G. Dubois, R. C. Pratt, H.-C. Kim, R. M. Waymouth and J. L. Hedrick, Application of solvent-directed assembly of block copolymers to the synthesis of nanostructured materials with low dielectric constants, Angew. Chem. Int. Ed., 2006, 45, 6648–6652.
34. A. L. S. Loke, S. S. Wong, N. A. Talwalkar, J. T. Wetzel, P. H. Townsend, T. Tanabe, R. N. Vrtis, M. P. Zussman and D. Kumar, Evaluation of copper penetration in low-κ polymer dielectrics by bias-temperature stress, MRS Symp. Proc., 1999, 565. 173–198.
35. B. Lee, Y.-H. Park, Y.-T. Hwang, W. Oh, J. Yoon and M. Ree, Ultralow-κ nanoporous organosilicate dielectric films imprinted with dendritic spheres, Nat. Mater., 2005, 4, 147–150.
36. Handbook of Advanced Electronic and Photonic Materials and Devices, Academic Press, 2001.
37. E. T. R. Michael Morgen, Jie-Hua Zhao, Chuan Hu, Taiheui Cho, and Paul S. Ho, Low dielectric constant materials for ulsi interconnects, Annu. Rev. Mater. Sci., 2000, 30, 645.
38. M. R. Baklanov and K. Maex, Porous low dielectric constant materials for microelectronics, Philos. Trans. A Math. Phys. Eng. Sci., 2006, 364, 201–215.
39. K. Zagorodniy, G. Seifert and H. Hermann, Metal–organic frameworks as promising candidates for future ultralow-κ dielectrics, Appl. Phys. Lett., 2010, 97, 251905.
40. V. Di Noto, A. B. Boeer, S. Lavina, C. A. Muryn, M. Bauer, G. A. Timco, E. Negro, M. Rancan, R. E. P. Winpenny and S. Gross, Functional Chromium wheel-based hybrid organic–inorganic materials for dielectric applications, Adv. Funct. Mater., 2009, 19, 3226–3236.
41. P. Yang, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, The first homochiral coordination polymer with temperature-independent piezoelectric and dielectric properties, J. Mater. Chem., 2012, 22, 2398.
42. F. Wang, C. Y. Ni, Q. Liu, F. L. Li, J. Shi, H. X. Li and J. P. Lang, [Pb(Tab)2(4,4′-bipy)](PF6)2: two-step ambient temperature quantitative solid-state synthesis, structure and dielectric properties, Chem. Comm., 2013, 49, 9248–9250.
43. S. Mendiratta, M. Usman, T. T. Luo, S. F. Lee, Y. C. Lin and K. L. Lu, Guest dependent dielectric properties of nickel(ii)-based supramolecular networks, CrystEngComm, 2014, 16, 6309–6315.
44. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Metal–organic framework ZIF-8 films as low-κ dielectrics in microelectronics, Chem. Mater., 2013, 25, 27–33.
45. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., 8th edn. 2005.
46. D. A. Neamen, Semiconductor Physics And Devices, Tata Mcgraw Hill Education Private Limited, 3rd edn. 2006.
47. X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications, J. Mater. Chem., 2008, 18, 509.
48. H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma and M. Kawasaki, Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor, Nat. Mater., 2004, 3, 221–224.
49. A. Janotti and C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 2009, 72, 126501.
50. J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc., 2013, 135, 6724–6746.
51. B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero and R. C. Ashoori, massive dirac fermions and hofstadter butterfly in a van der waals heterostructure, Science, 2013, 340, 1427–1430.
52. Handbook of Advanced Electronic and Photonic Materials and Devices, Academic Press, 2001.
53. C. G. Silva, A. Corma and H. García, Metal–organic frameworks as semiconductors, J. Mater. Chem., 2010, 20, 3141.
54. M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabres i Xamena and H. Garcia, Semiconductor behavior of a metal–organic framework (MOF), Chem. Eur. J., 2007, 13, 5106–5112.
55. M. Karthikeyan, B. Bhagyaraju, C. R. Mariappan, S. M. Mobin and B. Manimaran, Novel semiconducting metal–organic framework: Synthesis, structural characterisation and electrical conductivity studies of manganese based two dimensional coordination polymer, Inorg. Chem. Commun., 2012, 20, 269–272.
56. P. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre and D. Volkmer, Dielectric relaxation processes, electronic structure, and band gap engineering of mfu-4-type metal–organic frameworks: Towards a Rational Design of Semiconducting Microporous Materials, Adv. Funct. Mater., 2014, 24, 3885–3896.
57. A. J. W. G. V. a. O. J. Rolinski, Basic photophysics, American Society for Photobiology, 2010, (www.photobiology.info/Visser-Rolinski).
58. S. J. D. Kartik N. Shinde, H.C. Swart, Kyeongsoon Park, Phosphate Phosphors for Solid-State Lighting, Springer Science & Business Media, New York, 2012.
59. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. Houk, Luminescent metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1330-1352.
60. Q. Fang, G. Zhu, M. Xue, J. Sun, F. Sun and S. Qiu, Structure, Luminescence, and adsorption properties of two chiral microporous metal−organic frameworks, Inorg. Chem., 2006, 45, 3582–3587.
61. Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent functional metal–organic frameworks, Chem. Rev., 2012, 112, 1126–1162.
62. X. Li, X.-W. Wang and Y.-H. Zhang, Blue photoluminescent 3D Zn(II) metal–organic framework constructing from pyridine-2,4,6-tricarboxylate, Inorg. Chem. Commun., 2008, 11, 832–834.
63. K. Jayaramulu, P. Kanoo, S. J. George and T. K. Maji, Tunable emission from a porous metal–organic framework by employing an excited-state intramolecular proton transfer responsive ligand, Chem. Comm., 2010, 46, 7906–7908.
64. J.-L. Du, T.-L. Hu, J.-R. Li, S.-M. Zhang and X.-H. Bu, Metal coordination architectures of 2,3-bis(triazol-1-ylmethyl)quinoxaline: effect of metal ion and counterion on complex structures, Eur. J. Inorg. Chem., 2008, 2008, 1059–1066.
65. G.-H. Wang, Z.-G. Li, H.-Q. Jia, N.-H. Hu and J.-W. Xu, Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence, CrystEngComm, 2009, 11, 292.
66. J.-P. Zou, Q. Peng, Z. Wen, G.-S. Zeng, Q.-J. Xing and G.-C. Guo, Two novel metal−organic frameworks (mofs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties, Cryst. Growth Des., 2010, 10, 2613–2619.
67. X. W. Wang, J.-Z. Chen and J.-H. Liu, Photoluminescent Zn(II) metal−organic frameworks built from tetrazole ligand:  2d four-connected regular honeycomb (4363)-net, Cryst. Growth Des., 2007, 7, 1227–1229.
68. P. C. R. Soares-Santos, L. Cunha-Silva, F. A. A. Paz, R. A. S. Ferreira, J. Rocha, T. Trindade, L. D. Carlos and H. I. S. Nogueira, Photoluminescent 3d lanthanide−organic frameworks with 2,5-pyridinedicarboxylic and 1,4-phenylenediacetic acids, Cryst. Growth Des., 2008, 8, 2505–2516.
69. H.-J. Liu, X.-T. Tao, J.-X. Yang, Y.-X. Yan, Y. Ren, H.-P. Zhao, Q. Xin, W.-T. Yu and M.-H. Jiang, Three-dimensional metal−organic network architecture with large π-conjugated indolocarbazole derivative: synthesis, supramolecular structure, and highly enhanced fluorescence, Cryst. Growth Des., 2007, 8, 259–264.
70. J. Jin, S. Niu, Q. Han and Y. Chi, Synthesis and structure of a series of new luminescent Ag–Ln coordination polymers and the influence of the introduction of an Ag(i) ion on NIR luminescence from the Ln(iii) centre, New J. Chem., 2010, 34, 1176.
71. J. An, C. M. Shade, D. A. Chengelis-Czegan, S. Petoud and N. L. Rosi, Zinc-adeninate metal–organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations, J. Am. Chem. Soc., 2011, 133, 1220–1223.
72. U. S. d. o. Energy, Illuminating the Challenges: Solid State Lighting Program Planning Workshop report, U. S. Government Printing Office, Washington D. C., 2003.
73. B. W. D′Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 2004, 16, 1585–1595.
74. K. Liu, H. You, Y. Zheng, G. Jia, Y. Song, Y. Huang, M. Yang, J. Jia, N. Guo and H. Zhang, Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties, J. Mater. Chem., 2010, 20, 3272.
75. C. Y. Sun, X. L. Wang, X. Zhang, C. Qin, P. Li, Z. M. Su, D. X. Zhu, G. G. Shan, K. Z. Shao, H. Wu and J. Li, Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation, Nat. Commun., 2013, 4, 2717.
76. M.-S. Wang, S.-P. Guo, Y. Li, L.-Z. Cai, J.-P. Zou, G. Xu, W.-W. Zhou, F.-K. Zheng and G.-C. Guo, A direct white-light-emitting metal−organic framework with tunable yellow-to-white photoluminescence by variation of excitation light, J. Am. Chem. Soc., 2009, 131, 13572–13573.
77. D. F. Sava, L. E. S. Rohwer, M. A. Rodriguez and T. M. Nenoff, Intrinsic broad-band white-light emission by a tuned, corrugated metal–organic framework, J. Am. Chem. Soc., 2012, 134, 3983–3986.


2.5 Reference

1. P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche and F. J. Romero-Salguero, Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev., 2013, 42, 3913–3955.
2. H. Y. Yanjun Ma, J. Guo, C. Sathe, A. Agui, and J. Nordgren, Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films, Appl. Phys. Lett., 1998, 72, 3353.
3. M. R. Vengatesan, S. Devaraju, K. Dinakaran and M. Alagar, SBA-15 filled polybenzoxazine nanocomposites for low-κ dielectric applications, J. Mater. Chem., 2012, 22, 7559.
4. P. Sgarbossa, R. Bertani, V. Di Noto, M. Piga, G. A. Giffin, G. Terraneo, T. Pilati, P. Metrangolo and G. Resnati, Interplay between structural and dielectric features of new low k hybrid organic–organometallic supramolecular ribbons, Cryst. Growth Des., 2012, 12, 297–305.
5. W. Volksen, R. D. Miller and G. Dubois, Low dielectric constant materials, Chem. Rev., 2010, 110, 56–110.
6. M. E. H. Li, M. O’Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework, Nature, 1999, 402, 276–279.
7. S. Kitagawa, R. Kitaura and S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed., 2004, 43, 2334–2375.
8. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Metal–organic framework ZIF–8 films as low-κ dielectrics in microelectronics, Chem. Mater., 2013, 25, 27.
9. E. T. R. Michael Morgen, Jie-Hua Zhao, Chuan Hu, Taiheui Cho, and Paul S. Ho, low dielectric constant materials for ulsi interconnects, Annu. Rev. Mater. Sci., 2000, 30, 645.
10. B. Zhou, A. Kobayashi, H. B. Cui, L. S. Long, H. Fujimori and H. Kobayashi, Anomalous dielectric behavior and thermal motion of water molecules confined in channels of porous coordination polymer crystals, J. Am. Chem. Soc., 2011, 133, 5736–5739.
11. H. X. Tang YZ, Song YM, Hong Chan PW, Xiong RG, Homochiral 1D zinc-quitenine coordination polymer with a high dielectric constant., Inorg. Chem., 2006, 45, 4868.
12. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto and A. P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide, Science, 2001, 293, 673–676.
13. H.-X. Zhao, J.-X. Liu, L.-S. Long, A. A. Bokov, Z.-G. Ye, R.-B. Huang and L.-S. Zheng, High Dielectric constant and relaxation mechanism of water with hydrated copper(ii) ions in a cucurbit[8]uril-based supramolecular architecture, J. Phys. Chem. C, 2012, 116, 14199–14204.
14. D. W. Fu, H. Y. Ye, Q. Ye, K. J. Pan and R. G. Xiong, Ferroelectric metal–organic coordination polymer with a high dielectric constant, Dalton Trans., 2008, 7, 874–877.
15. H. B. Cui, K. Takahashi, Y. Okano, H. Kobayashi, Z. Wang and A. Kobayashi, Dielectric properties of porous molecular crystals that contain polar molecules, Angew. Chem. Int. Ed., 2005, 44, 6508–6512.



3.5 References
1. M. E. H. Li, M. O’Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework, Nature, 1999, 402, 276–279.
2. G. Ferey, Hybrid porous solids: past, present, future, Chem. Soc. Rev., 2008, 37, 191–214.
3. S. Kitagawa, R. Kitaura and S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed., 2004, 43, 2334–2375.
4. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin and J. T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, J. Am. Chem. Soc., 2012, 134, 15016–15021.
5. E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S. Ohkoshi and M. Verdaguer, High proton conduction in a chiral ferromagnetic metal–organic quartz-like framework, J. Am. Chem. Soc., 2011, 133, 15328–15331.
6. C. Pan, J. Nan, X. Dong, X.-M. Ren and W. Jin, A Highly Thermally Stable Ferroelectric Metal–Organic Framework and Its Thin Film with Substrate Surface Nature Dependent Morphology, J. Am. Chem. Soc., 2011, 133, 12330–12333.
7. K. Zagorodniy, G. Seifert and H. Hermann, Metal–organic frameworks as promising candidates for future ultralow-κ dielectrics, Appl. Phys. Lett., 2010, 97, 251905.
8. E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann and C. Wöll, On the dielectric and optical properties of surface-anchored metal–organic frameworks: A study on epitaxially grown thin films, Appl. Phys. Lett., 2013, 103, 091903.
9. M. Usman, C.-H. Lee, D.-S. Hung, S.-F. Lee, C.-C. Wang, T.-T. Luo, L. Zhao, M.-K. Wu and K.-L. Lu, Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials, J. Mater. Chem. C, 2014, 2, 3762–3768.
10. F. Wang, C. Y. Ni, Q. Liu, F. L. Li, J. Shi, H. X. Li and J. P. Lang, [Pb(Tab)2(4,4′-bipy)](PF6)2: two-step ambient temperature quantitative solid-state synthesis, structure and dielectric properties, Chem. Commun., 2013, 49, 9248–9250.
11. S. Mendiratta, M. Usman, T.-T. Luo, S.-F. Lee, Y.-C. Lin and K.-L. Lu, Guest dependent dielectric properties of nickel(ii)-based supramolecular networks, CrystEngComm, 2014, 16, 6309–6315.
12. S. Mendiratta, M. Usman, T.-T. Luo, B.-C. Chang, S.-F. Lee, Y.-C. Lin and K.-L. Lu, Anion-controlled dielectric behavior of homochiral tryptophan-based metal–organic frameworks, Cryst. Growth Des., 2014, 14, 1572–1579.
13. P. Yang, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, The first homochiral coordination polymer with temperature-independent piezoelectric and dielectric properties, J. Mater. Chem., 2012, 22, 2398.
14. P. C. Guo, Z. Chu, X. M. Ren, W. H. Ning and W. Jin, Comparative study of structures, thermal stabilities and dielectric properties for a ferroelectric MOF [Sr(µ-BDC)(DMF)]infinity with its solvent-free framework, Dalton Trans., 2013, 42, 6603–6610.
15. V. Di Noto, A. B. Boeer, S. Lavina, C. A. Muryn, M. Bauer, G. A. Timco, E. Negro, M. Rancan, R. E. P. Winpenny and S. Gross, Functional chromium wheel-based hybrid organic–inorganic materials for dielectric applications, Adv. Funct. Mater., 2009, 19, 3226–3236.
16. L.-Z. Chen, J. Zou, Y.-M. Gao, S. Wan and M.-N. Huang, A 2-D tetrazole-based Zn(II) coordination polymer: crystal structure, dielectric constant, and luminescence, J. Coord. Chem., 2011, 64, 715–724.
17. P.-C. Guo, T.-Y. Chen, X.-M. Ren, W.-H. Ning and W. Jin, A low-κ dielectric metal–organic-framework compound showing novel three-step dielectric relaxations originating from orientational motion of dipolar guest molecules, New J. Chem., 2014, 38, 2254.
18. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Metal–organic framework zif-8 films as low-κ dielectrics in microelectronics, Chem. Mater., 2013, 25, 27-33.

4.5 References
1. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Leonard and M. D. Allendorf, Tunable electrical conductivity in metal–organic framework thin-film devices, Science, 2014, 343, 66–69.
2. Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent functional metal–organic frameworks, Chem. Rev., 2012, 112, 1126–1162.
3. M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabres i Xamena and H. Garcia, semiconductor behavior of a metal–organic framework (MOF), Chem. Eur. J., 2007, 13, 5106–5112.
4. C. G. Silva, A. Corma and H. García, Metal–organic frameworks as semiconductors, J. Mater. Chem., 2010, 20, 3141.
5. C. E. Ekuma, M. Jarrell, J. Moreno and D. Bagayoko, First principle electronic, structural, elastic, and optical properties of strontium titanate, AIP Adv., 2012, 2, 012189.
6. A. M. Smith and S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res., 2009, 43, 190–200.
7. C. Lincheneau, M. Amelia, M. Oszajca, A. Boccia, F. D′Orazi, M. Madrigale, R. Zanoni, R. Mazzaro, L. Ortolani, V. Morandi, S. Silvi, K. Szacilowski and A. Credi, Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals, J. Mater. Chem. C, 2014, 2, 2877–2886.
8. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort and E. P. A. M. Bakkers, Direct band gap wurtzite gallium phosphide nanowires, Nano Lett., 2013, 13, 1559–1563.
9. B. Durand, G. Taillades, A. Pradel, M. Ribes, J. C. Badot and N. Belhadj-Tahar, Frequency dependence of conductivity in superionic conducting chalcogenide glasses, J. Non-Cryst. Solids, 1994, 172–174, Part 2, 1306–1314.
10. P. Dutta, S. Biswas, M. Ghosh, S. K. De and S. Chatterjee, The DC and AC conductivity of polyaniline–polyvinyl alcohol blends, Synt. Met., 2001, 122, 455–461.
11. M. A. Afifi, A. E. Bekheet, E. Abd Elwahhab and H. E. Atyia, AC conductivity and dielectric properties of amorphous In2Se3 films, Vacuum, 2001, 61, 9–17.
12. A. Planchais, S. Devautour-Vinot, F. Salles, F. Ragon, T. Devic, C. Serre and G. Maurin, A joint experimental/computational exploration of the dynamics of confined water/Zr-based MOFs Systems, J. Phys. Chem. C, 2014, 118, 14441–14448.
13. P. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre and D. Volkmer, Dielectric relaxation processes, electronic structure, and band gap engineering of MFU-4-type metal–organic frameworks: towards a rational design of semiconducting microporous materials, Adv. Funct. Mater. 2014, 24, 3885–3896.
14. M. Usman, C.-H. Lee, D.-S. Hung, S.-F. Lee, C.-C. Wang, T.-T. Luo, L. Zhao, M.-K. Wu and K.-L. Lu, Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials, J. Mater. Chem. C, 2014, 2, 3762–3768.
15. A. K. Jonscher, The “universal” dielectric response, Nature, 1977, 267, 673–679.
16. B. Zhou, A. Kobayashi, H.-B. Cui, L.-S. Long, H. Fujimori and H. Kobayashi, Anomalous dielectric behavior and thermal motion of water molecules confined in channels of porous coordination polymer crystals, J. Am. Chem. Soc., 2011, 133, 5736–5739.
17. H.-X. Zhao, J.-X. Liu, L.-S. Long, A. A. Bokov, Z.-G. Ye, R.-B. Huang and L.-S. Zheng, High dielectric constant and relaxation mechanism of water with hydrated copper(ii) ions in a cucurbit[8]uril-based supramolecular architecture, J. Phys. Chem. C, 2012, 116, 14199–14204.
18. X. W. Wang, J.-Z. Chen and J.-H. Liu, Photoluminescent Zn(II) metal−organic frameworks built from tetrazole ligand:  2D four-connected regular honeycomb (4363)-net, Cryst. Growth Des., 2007, 7, 1227–1229.
19. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77, 3865–3868.
20. K. T. Butler, C. H. Hendon and A. Walsh, Electronic chemical potentials of porous metal–organic frameworks, J. Am. Chem. Soc., 2014, 136, 2703–2706.
21. K. Zagorodniy, G. Seifert and H. Hermann, Metal–organic frameworks as promising candidates for future ultralow-κ dielectrics, Appl. Phys. Lett., 2010, 97, 251905.



5.5 References
1. The 2014 Nobel Prize in Physics - Press Release, Nobelprize.org. Nobel Media (www.nobelprize.org/nobel_prizes/physics/laureates/2014/press/), 2014.
2. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. Houk, Luminescent metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1330–1352.
3. C. Y. Sun, X. L. Wang, X. Zhang, C. Qin, P. Li, Z. M. Su, D. X. Zhu, G. G. Shan, K. Z. Shao, H. Wu and J. Li, Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation, Nat. Commun., 2013, 4, 2717.
4. L. V. Meyer, F. Schonfeld, A. Zurawski, M. Mai, C. Feldmann and K. Muller-Buschbaum, A blue luminescent MOF as a rapid turn-off/turn-on detector for H2O, O2 and CH2Cl2, MeCN: [Ce(Im)3ImH].ImH, Dalton Trans., 2015, 44, 4070–4079.
5. C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons and M. D. Allendorf, Influence of connectivity and porosity on ligand-based luminescence in zinc metal−organic frameworks, J. Am. Chem. Soc., 2007, 129, 7136–7144.
6. J.-P. Zou, Q. Peng, Z. Wen, G.-S. Zeng, Q.-J. Xing and G.-C. Guo, Two novel metal−organic frameworks (mofs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties, Cryst. Growth Des., 2010, 10, 2613–2619.
7. R. Feng, F. L. Jiang, L. Chen, C. F. Yan, M. Y. Wu and M. C. Hong, A luminescent homochiral 3D Cd(II) framework with a threefold interpenetrating uniform net 8(6), Chem. Commun., 2009, 35, 5296–5298.
8. Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent functional metal–organic frameworks, Chem. Rev., 2012, 112, 1126–1162.
9. X. W. Wang, J.-Z. Chen and J.-H. Liu, Photoluminescent Zn(II) Metal−Organic frameworks built from tetrazole ligand:  2d four-connected regular honeycomb (4363)-net, Cryst. Growth Des., 2007, 7, 1227–1229.
10. Q. Fang, G. Zhu, M. Xue, J. Sun, F. Sun and S. Qiu, Structure, luminescence, and adsorption properties of two chiral microporous metal−organic frameworks, Inorg. Chem., 2006, 45, 3582–3587.
11. G.-H. Wang, Z.-G. Li, H.-Q. Jia, N.-H. Hu and J.-W. Xu, Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence, CrystEngComm, 2009, 11, 292.
12. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 1993, 47, 558–561.
13. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136, B864–B871.
14. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. lett., 1996, 77, 3865–3868.
15. C. Shen, J. Chu, F. Qian, X. Zou, C. Zhong, K. Li and S. Jin, High color rendering index white LED based on nano-YAG:Ce3+phosphor hybrid with CdSe/CdS/ZnS core/shell/shell quantum dots, J. Mod. Opt., 2012, 59, 1199–1203.


6.5 Reference
1. B. W. D′Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 2004, 16, 1585–1595.
2. M.-S. Wang, S.-P. Guo, Y. Li, L.-Z. Cai, J.-P. Zou, G. Xu, W.-W. Zhou, F.-K. Zheng and G.-C. Guo, A direct white-light-emitting metal−organic framework with tunable yellow-to-white photoluminescence by variation of excitation light, J. Am. Chem. Soc., 2009, 131, 13572–13573.
3. D. F. Sava, L. E. S. Rohwer, M. A. Rodriguez and T. M. Nenoff, Intrinsic broad-band white-light emission by a tuned, corrugated metal–organic framework, J. Am. Chem. Soc., 2012, 134, 3983–3986.
4. X. W. Wang, J.-Z. Chen and J.-H. Liu, Photoluminescent Zn(II) metal−organic frameworks built from tetrazole ligand:  2d four-connected regular honeycomb (4363)-net, Cryst. Growth Des., 2007, 7, 1227–1229.
5. Q. Fang, G. Zhu, M. Xue, J. Sun, F. Sun and S. Qiu, Structure, luminescence, and adsorption properties of two chiral microporous metal−organic frameworks, Inorg. Chem., 2006, 45, 3582–3587.
6. G.-H. Wang, Z.-G. Li, H.-Q. Jia, N.-H. Hu and J.-W. Xu, Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence, CrystEngComm, 2009, 11, 292.
7. Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent functional metal–organic frameworks, Chem. Rev., 2012, 112, 1126–1162.
指導教授 呂光烈、陳賜原(Kuang-Lieh Lu Szu-Yuan Chen) 審核日期 2015-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明