博碩士論文 992203001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.239.172.52
姓名 陳思涵(Ssu-han Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 染料敏化太陽能電池用二茂鐵系統電解質的探討
(Dye-Sensitized Solar Cells with Ferrocene-Based Electrolyte)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(DSSC)因成本低、製作簡易、質輕、可製作成可撓曲式…等優點,在第三代太陽能電池中具有發展潛力。在DSSC中,電解液扮演還原染料、傳遞電洞及決定理論Voc值的重要角色。目前最常用的電解質為iodide / triiodide系統,但因其具易升華、會腐蝕大部分的金屬等的先天缺點,因此,科學家紛紛尋找其他種類的電解質。其中,ferrocene / ferrocenium系統電解質不具腐蝕性、低氧化/還原電位可有效的還原染料等特色,是一種有潛力做為DSSC電解質的材料。本研究使用兩種染料,分別為本實驗室所開發的釕金屬錯合物染料CYC-B12及購買的有機染料D149,吸附於經過TiCl4前、後處理的TiO2電極上,再搭配ferrocene / ferrocenium電解質組裝成DSSC元件。藉由在電解質溶液中添加不同的成分及改變各成分的濃度比例,探討不同電解質溶液對元件效率的影響。其中以 K33 electrolyte (0.1M Ferrocene / 0.01M FcBF4 / 0.1M TBP / 0.2M LiTFSI / 0.06M TBACDCA)的結果最好。由K33電解質搭配CYC-B12光敏化劑所組裝的電池元件,光電轉換效率為3.49 % (I-/I3-系統:6.87 %);若以D149為光敏化劑所組裝的電池元件,光電轉換效率為4.04 % (I-/I3-系統:5.81 %)。
摘要(英) Dye-Sensitized Solar Cells (DSSCs), one of the third generation thin film solar cells, are attractive due to their low cost, light weight, colorfulness, easy fabrication and flexibility. Electrolyte is one of the important components, which reduced the dye, carried the hole to the cathode and determine the Voc of a DSSC. Iodide/ triiodide system is the commonly used electrolyte, however it has some inherent drawbacks. Looking for other alternative electrolytes become an active research. Ferrocene/ Ferrocenium system with non corrosive in nature, low redox potential, and high redox reactivity has a great potential to be used as a electrolyte material in DSSC. In this study, We used two dyes: one is Ru-complex CYC-B12 developed by our laboratory, and the other is organic dye D149 as sensitizers. TiO2 electrode was pretreated by TiCl4 before dye adsorption. Electrolyte with arious components as well as different ratio of each component were used to explore the performance of DSSC based on ferrocene/ ferrocenium electrolyte. The best one is K33 electrolyte with the composition of 0.1M ferrocene/ 0.01M FcBF4/ 0.1M TBP/ 0.2M LiTFSI/ 0.06M TBACDCA in ACN. DSSC used K33 electrolyte, CYC-B12 sensitizer achieves the efficiency of 3.49 % (I-/I3- system:6.87 %). When D149 dye was used the efficiency of DSSC based on the same TiO2 anode and K33 electrolyte is 4.04 % (I-/I3- system:5.81 %).
關鍵字(中) ★ 染料敏化太陽能電池
★ 電解質溶液
★ 二茂鐵
關鍵字(英) ★ Dye-sensitized solar cell
★ electrolyte
★ Ferrocene
論文目次 中文摘要………………………………………………………………I
ABSTRACT…………………………………………………………….II
謝誌………………………………………………………………….III
<目錄>……………………………………………………………….IV
圖目錄……………………………………………………………….VIII
表目錄……………………………………………………………….XV
第一章 緒論…………………………………………………………1
1.1前言………………………………………………………………1
1.2染料敏化太陽能電池(DSSC)的組成與工作原理………………2
1.2.1染料敏化太陽能電池的基本工作原理………………………3
1.2.2染料敏化太陽能電池光電轉換效率測試……………………4
1.3 影響染料敏化太陽能電池光電轉換效率的因素…………… 4
1.4用於染料敏化太陽能電池之電解質的特性要求及常見的電解質
材料………………………………………………………………14
1.5研究動機…………………………………………………………22
第二章 實驗方法……………………………………………………24
2.1 實驗藥品及儀器……………………………………………….24
2.2 二氧化鈦奈米粒子的合成及漿料的製備…………………….28
2.2.1 二氧化鈦奈米粒子的合成…………………………… 28
2.2.2 適用於網印機(Screen Printing)之二氧化鈦漿料的製 備..29
2.3 Ferrocene / Ferrocenium 電解質溶液的製備………………….31
2.4 TBACDCA的配製……………………………………………….32
2.5 染料敏化太陽能電池元件的組裝……………………………32
2.5.1 二氧化鈦陽極的製備及電極修飾……………………32
2.5.2 Pt對電極的製備………………………………………34
2.5.3 太陽能電池的組裝……………………………………34
2.6儀器分析與樣品製備………………………………………… 35
2.6.1 掃描式電子顯微鏡
(Scanning Electron Microscope, SEM)……………………… 35
2.6.2 電化學量測系統(AutoLab Potentiostat / Galvanostat)…..36
2.6.3交流阻抗儀 (AC-Impedance, AutoLab potentiostat /galvanostat, PGSTAT30 With FRA2)……………………..38
2.6.4太陽光模擬器(Solar Simulator)…………………… 41
2.6.5太陽能電池外部量子效率量測系統
(Incident Photon to Current Conversion Efficieny, IPCE)………………………………………………………………………41
2.6.6紫外光/可見光/近紅外光吸收光譜
(UV/VIS/NIR Spectrometer)…………………………………… 43
第三章 結果與討論……………………………………………44
3.1二氧化鈦電極修飾對元件效率的影響……………………… 44
3.2 Ferrocene濃度對元件效率的影響………………………… 47
3.3 TBP之存在對元件效率的影響……………………………… 48
3.4 Ferrocenium濃度對元件效率的影響……………………… 49
3.5 Ferrocene / Ferrocenium濃度不同對元件效率的影響… 50
3.6 Ferrocene / Ferrocenium / TBP濃度比例不同對元件效率
的影響……………………………………………………………..52
3.7 Ferrocenium之共軛陰離子對元件效率的影響…………… 54
3.8添加物對元件效率的影響…………………………………… 58
3.8.1添加不同離子性化合物的影響…………………………58
3.8.2離子化合物的濃度對元件效率的影響…………………61
3.9.1添加不同濃度TBACDCA對元件效率的影響…………… 64
3.10改變電解質溶劑對元件效率的影響…………………………68
3.11添加離子液體對元件效率的影響……………………………72
3.12 Fc / Fc+與I- / I3- 系統比較……………………………80
3.13 Fc / Fc+用於不同染料之比較…………………………… 85
第四章 結論……………………………………………………… 89
第五章 參考文獻………………………………………………… 91
附錄 A (電解質配方一覽表)…………………………………… 95
參考文獻 1.B. O’Regan, M. Grätzel, Nature. 1991, 353, 737-739.
2.V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater. Sci. Eng. R. 2009, 63, 81-99.
3.M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, H. Arakawa, J. Mater. Chem. 2006,16, 1287-1293
4.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663.
5.H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, J. Phys. Chem. C. 2009, 113, 16277-16282.
6.K. -S. Ahn, M. -S. Kang, J. -W. Lee, Y. -S. Kang, J. Appl. Phy. 2007, 101, 084312-084315.
7.L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen; F. Kong, X. Pan, L. Liang, K. Wang, J. Phys. Chem. B. 2007, 111, 358-362.
8.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry– Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gräetzel, J. Am. Chem. Soc. 1993, 115, 6382-6390.
9.M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Nazeeruddin, R. Humphry– Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gräetzel, J. Am. Chem. Soc. 2001, 123, 1613-1624.
10.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 2011, 19, 84-92.
11.W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915–1925.
12.A. Hauch, A. Georg, Electrochim. Acta. 2001, 46, 3457-3466.
13.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663.
14.H. Tian, L. Sun, J. Mater. Chem. 2011, 21, 10592–10601.
15.S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res. 2009, 42, 1827–1838.
16.A. Hagfeldt, G. Boschloo, L. -C Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595–6663.
17.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry– Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gräetzel, J. Am. Chem. Soc. 1993, 115, 6382-6390.
18.G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B. 1997, 101, 8141-8155.
19.Y. Bai, J. Zhang, Y. Wang, M. Zhang, P. Wang, Langmuir. 2011, 27, 4749–4755.
20.E. M. J. Johansson, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C. 2010, 114, 10551–10558.
21.Z. S. Wang, K. Sayama, H. Sugihara, J. Phys. Chem. B. 2005, 109, 22449-22455.
22.G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, J. Phys. Chem. B. 2001, 105, 6867-6873.
23.Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, Michael Grätzel, Adv. Funct. Mater. 2008, 18, 341-346.
24.M. K. Wang, N. Chamberland, L. Breau, J. E. Moser, R. Humphry-Baker, B.Marsan, S. M. Zakeeruddin, M. Grätzel, Nat. Chem. 2010, 2, 385-389.
25.S. Hattori; Y. Wada; S. Yanagida; S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 9648-9654.
26.T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 4580–4582.
27.A. Yella, H. -W. Lee, H. -N, Tsao, C. Yi, A. -K. Chandiran, Md. -K. Nazeeruddin, E. W. -G. Diau, C. -Y. Yeh, S. -M. Zakeeruddin, M. Grätzel, Science. 2011, 334, 629-633.
28.H. Nusbaumer, S.M. Zakeeruddin, J. -E. Moser, M. Grätzel, Chem.sEur. J. 2003, 9, 3756-3763.
29.S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 2010, 132, 16714-16724.
30.Y. Liu, J. -R. Jennings, Y. Huang, Q. Wang, S. -M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C. 2011, 115, 18847-18855.
31.T. -W. Hamann, O. -K. Farha, J. -T. Hupp, J. Phys. Chem. C. 2008, 112, 9756–19764.
32.(a) S. M. Feldt, U. B. Cappel, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C. 2010, 114, 10551–10558. (b) B. -A. Gree, F. Pichot, S. Ferrere, C. -L. Fields, J. Phys. Chem. B. 2001, 105, 1422-1429.
33.T. Daeneke, T. H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nature Chemistry. 2011, 963-966.
34.J. -J. Kim, H. Choi, C. Kim, M. -S. Kang, H. -S. Kang, J. Ko, Chem. Mater. 2009, 21, 5719-5726.
35.(a) Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B. 2005, 109, 14945 -14953. (b) C. Longo, A. F. Nogueira, M.- A. De Paoli, J. Phys. Chem. B. 2002, 106, 5925-5930.
36.H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, J. Phys. Chem. C. 2009, 113, 16277-16282.
37.S. -C. Yang, D. –J. Yang, J. Kim, J. –M. Hong, H. –G. Kim, I. –D. Kim, H. Lee, Adv. Mater. 2008, 20, 1059-1064.
38.C. -Y. Chen, N. Pootrakulchote, T. -H. Hung, C. -J. Tan, H. -H. Tsai, S. -M. Zakeeruddin, C. -G. Wu, M. Grätzel, J. Phys. Chem. C. 2011, 115, 20043-20050.
39.T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 124, 12218-12219.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2012-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明