博碩士論文 992203008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.208.159.25
姓名 高千雅(Chien-Ya Kao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討
(Discovery, Synthesis and Structure-Activity Relationship of 4,4’-Methylenedianiline or Benzidine Based Tetrachloro Derivatives as Human Glutathione S-Transferase Inhibitors)
相關論文
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討
★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型★ Squamocin 之合成研究
★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究
★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑
★ LCA-Fentanyl Hybrid Molecules: Anaesthetic Implications of Antimetastasis Chemotherapy★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
★ DNA型式碳水化合物抗原之生物偵測器的開發及應用★ 設計合成新型的唾液酸轉移酶抑制劑
★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用
★ 平面化寡聚萘分子之合成及其光學、電學性 質研究★ 設計合成麩胺基硫轉換酶的抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 抗藥性為癌症用藥在臨床上常遇到的問題。麩胺基硫轉移酶 (Glutathione S-transferase,GST) 在許多種癌細胞中大量表現的現象,被認為是癌細胞產生抗藥性的重要原因之一,因此設計並合成麩胺基硫轉移酶的抑制劑為本實驗的主要目的。
本實驗設計是由Ethacrynic acid為參考結構,以4,4’-亞甲基對苯胺 (4,4’-Methylenedianiline) 或聯苯胺 (Benzidine) 的四氯化合物為骨架,運用胺基與不同類型的結構形成二級胺或醯胺鍵結,包括含有雙鍵的脂肪族結構及含有雙鍵的芳香族或直接與芳香族鍵結。由於主結構中含有四個拉電子的Cl,使得胺基的親核性大幅降低,因此,選擇以醯氯作為合成醯胺鍵時的起始物,而在合成二級胺的過程中加入分子篩及TFA做為催化形成亞胺。目前已得到二十八個結構各異的化合物。
這些化合物在20 μM的濃度下對hGSTA2做初步的生物活性測試,結果顯示,A4-II、A8-II、A9-II、A15-II、B4-II、B8-II、B9-II、B15-II這些含有醯胺鍵的化合物擁有較好的抑制能力,推測羰基上的氧與酵素活化中心的氨基酸可形成氫鍵作用,因而增加了化合物與hGST A2的結合能力的緣故。此外A5-II和A6-II雖是二級胺化合物,但也有不錯的抑制能力。證明這類結構及其衍生物在生物體外確實具有抑制hGST的效果。
摘要(英) Drug resistance is a big problem in clinical therapy of anticancer drugs. The overexpression of glutathione S-transferase (GST) isozymes in number types of human cancers has been recognized as an important reason of drug resistance in cancer cell. Therefore, design and synthesis of the GST inhibitors are the targets of this thesis.
The search of framework of GST inhibitor started at structural modification of ethacrynic acid. We chose both 4,4’-methylenedianiline and benzidine based tetrachloro compounds as the core structures, and used the amino group to form the secondary amine or amide linkage with different side chain including aliphatic or aromatic structure containing functional moiety of double bond. Because the four intramolecular Cl atoms are electron-withdrawing groups, they decrease the nucleophilicity of amino group in core structure. For this reason, acyl chloride was used as the reagent in amide bond construction in the presence of molecular sieve and TFA to facilitate imine formation in the first step of second amine synthesis. Twenty-eight derivatives have been prepared now and are ready for biological evaluation.
Study of inhibitory activity showed that the amide compounds (20 μM), A4-II, A8-II, A9-II, A15-II, B4-II, B8-II, B9-II and B15-II display better inhibitory ability against hGSTA2 compared to those of the secondary amine derivatives. The results suggest that the oxygen of carbonyl group may increase the binding interaction with the amino acid residues of enzyme in the active site. Exceptionally, the secondary amine compounds, A5-II and A6-II, also exhibited moderate inhibition toward hGSTA2. In summary, these derivatives represent new chemical entities to inhibit hGST activity in vitro.
關鍵字(中) ★ 麩胺基硫
★ 麩胺基硫轉移酶抑制劑
★ 麩胺基硫轉移酶
★ 穀胱甘肽
關鍵字(英) ★ Glutathione S-transferase
★ Glutathione
★ Glutathione S-transferase inhibitor
論文目次 摘要.............................................................I
Abstract........................................................II
目錄...........................................................III
圖目錄..........................................................VI
表目錄.........................................................VII
一、 導論........................................................1
1.1 麩胺基硫 (Glutathione,GSH)...............................2
1.2 麩胺基硫轉移酶 (Glutathione S-transferase,GST)...........5
1.3 麩胺基硫轉移酶抑制劑 (GST inhibitor)......................8
二、 實驗及結果討論.............................................10
2.1 實驗設計.................................................10
2.2 化學合成.................................................12
2.2.1 合成二級胺 (Secondary amine) 化合物.................12
2.2.2 合成醯胺 (Amide) 化合物.............................14
2.2.3 合成以Diphenylmethane為中心結構的二級胺化合物.......16
2.2.4 合成以Diphenylmethane為中心結構的醯胺化合物.........17
2.2.5 合成以Biphenyl為中心結構的二級胺化合物..............18
2.2.6 合成以Biphenyl為中心結構的醯胺化合物................19
2.3 生物活性測試.............................................20
2.4 結構與活性探討...........................................23
2.4.1 針對A類型化合物的分析...............................23
2.4.2 針對B類型化合物的分析...............................25
2.4.3 A類型與B類型化合物交叉分析..........................26
2.5 結論.....................................................28
三、 實驗與光譜數據.............................................29
3.1 實驗儀器.................................................29
3.2 實驗藥品.................................................30
3.3 一般實驗方法.............................................33
3.3.1 化合物A1-II的合成...................................33
3.3.2 化合物A1-I的合成....................................34
3.3.3 化合物A2-II的合成...................................35
3.3.4 化合物A3-II的合成...................................36
3.3.5 化合物A4-II的合成...................................37
3.3.6 化合物A5-II的合成...................................38
3.3.7 化合物A5-I的合成....................................39
3.3.8 化合物A6-II的合成...................................40
3.3.9 化合物A6-I的合成....................................41
3.3.10 化合物A7-II的合成..................................42
3.3.11 化合物A7-I的合成...................................43
3.3.12 化合物A8-II的合成..................................44
3.3.13 化合物A9-II的合成..................................45
3.3.14 化合物A15-II的合成.................................46
3.3.15 化合物B1-II的合成..................................47
3.3.16 化合物B1-I的合成...................................48
3.3.17 化合物B2-II的合成..................................49
3.3.18 化合物B3-II的合成..................................50
3.3.19 化合物B4-II的合成..................................51
3.3.20 化合物B5-II的合成..................................52
3.3.21 化合物B5-I的合成...................................53
3.3.22 化合物B6-II的合成..................................54
3.3.23 化合物B6-I的合成...................................55
3.3.24 化合物B7-II的合成..................................56
3.3.25 化合物B7-I的合成...................................57
3.3.26 化合物B8-II的合成..................................58
3.3.27 化合物B9-II的合成..................................59
3.3.28 化合物B15-II的合成.................................60
四、 參考文獻...................................................61
五、 光譜附錄...................................................65
參考文獻 1.Balendiran, G. K.; Dabur, R.; Fraser, D., The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22 (6), 343-352.
2.Dickinson, D. A.; Forman, H. J., Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002, 64 (5-6), 1019-1026.
3.Griffith, O. W.; Bridges, R. J.; Meister, A., Evidence that the gamma-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and selective inhibition of enzymes. Proc. Natl. Acad. Sci. U. S. A. 1978, 75 (11), 5405-5408.
4.Filomeni, G.; Rotilio, G.; Ciriolo, M. R., Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ. 2005, 12 (12), 1555-1563.
5.Hayes, J. D.; McLellan, L. I., Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Res. 1999, 31 (4), 273-300.
6.Janssen, Y. M.; Van Houten, B.; Borm, P. J.; Mossman, B. T., Cell and tissue responses to oxidative damage. Lab. Invest. 1993, 69 (3), 261-274.
7.Halliwell, B., Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 1994, 344 (8924), 721-724.
8.Takebe, G.; Yarimizu, J.; Saito, Y.; Hayashi, T.; Nakamura, H.; Yodoi, J.; Nagasawa, S.; Takahashi, K., A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 2002, 277 (43), 41254-41258.
9.Toborek, M.; Hennig, B., Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells. Am. J. Clin. Nutr. 1994, 59 (1), 60-65.
10.Ishikawa, T., The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 1992, 17 (11), 463-468.
11.Armstrong, R. N., Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 1997, 10 (1), 2-18.
12.Mahajan, S.; Atkins, W. M., The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cell. Mol. Life Sci. 2005, 62 (11), 1221-1233.
13.Cho, S. G.; Lee, Y. H.; Park, H. S.; Ryoo, K.; Kang, K. W.; Park, J.; Eom, S. J.; Kim, M. J.; Chang, T. S.; Choi, S. Y.; Shim, J.; Kim, Y.; Dong, M. S.; Lee, M. J.; Kim, S. G.; Ichijo, H.; Choi, E. J., Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 2001, 276 (16), 12749-12755.
14.Gate, L.; Majumdar, R. S.; Lunk, A.; Tew, K. D., Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J. Biol. Chem. 2004, 279 (10), 8608-8616.
15.Villafania, A.; Anwar, K.; Amar, S.; Chie, L.; Way, D.; Chung, D. L.; Adler, V.; Ronai, Z.; Brandt-Rauf, P. W.; Yamaizumii, Z.; Kung, H. F.; Pincus, M. R., Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann. Clin. Lab. Sci. 2000, 30 (1), 57-64.
16.Wang, T.; Arifoglu, P.; Ronai, Z.; Tew, K. D., Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J. Biol. Chem. 2001, 276 (24), 20999-21003.
17.Fritz-Wolf, K.; Becker, A.; Rahlfs, S.; Harwaldt, P.; Schirmer, R. H.; Kabsch, W.; Becker, K., X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (24), 13821-13826.
18.Ji, X.; Tordova, M.; O’’Donnell, R.; Parsons, J. F.; Hayden, J. B.; Gilliland, G. L.; Zimniak, P., Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase. Biochemistry (Mosc). 1997, 36 (32), 9690-9702.
19.Lo, H. W.; Ali-Osman, F., Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol. 2007, 7 (4), 367-374.
20.McIlwain, C. C.; Townsend, D. M.; Tew, K. D., Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006, 25 (11), 1639-1648.
21.Li, W. S.; Lam, W. S.; Liu, K. C.; Wang, C. H.; Chang, H. C.; Jen, Y. C.; Hsu, Y. T.; Shivatare, S. S.; Jao, S. C., Overcoming the drug resistance in breast cancer cells by rational design of efficient glutathione S-transferase inhibitors. Org. Lett. 2010, 12 (1), 20-23.
22.Burg, D.; Filippov, D. V.; Hermanns, R.; van der Marel, G. A.; van Boom, J. H.; Mulder, G. J., Peptidomimetic glutathione analogues as novel gammaGT stable GST inhibitors. Bioorg. Med. Chem. 2002, 10 (1), 195-205.
23.Burg, D.; Hameetman, L.; Filippov, D. V.; van der Marel, G. A.; Mulder, G. J., Inhibition of glutathione S-transferase in rat hepatocytes by a glycine-tetrazole modified S-alkyl-GSH analogue. Bioorg. Med. Chem. Lett. 2002, 12 (12), 1579-1582.
24.Burg, D.; Mulder, G. J., Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab. Rev. 2002, 34 (4), 821-863.
25.Burg, D.; Riepsaame, J.; Pont, C.; Mulder, G.; van de Water, B., Peptide-bond modified glutathione conjugate analogs modulate GSTpi function in GSH-conjugation, drug sensitivity and JNK signaling. Biochem. Pharmacol. 2006, 71 (3), 268-277.
26.Procopio, A.; Alcaro, S.; Cundari, S.; De Nino, A.; Ortuso, F.; Sacchetta, P.; Pennelli, A.; Sindona, G., Molecular modeling, synthesis, and preliminary biological evaluation of glutathione-S-transferase inhibitors as potential therapeutic agents. J. Med. Chem.2005, 48 (19), 6084-6089.
27.Aizawa, S.; Ookawa, K.; Kudo, T.; Asano, J.; Hayakari, M.; Tsuchida, S., Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci. 2003, 94 (10), 886-893.
28.Yang, X.; Liu, G.; Li, H.; Zhang, Y.; Song, D.; Li, C.; Wang, R.; Liu, B.; Liang, W.; Jing, Y.; Zhao, G., Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure-activity relationships in inhibiting the activity of glutathione S-transferase P1-1 and cancer cell proliferation. J. Med. Chem. 2010, 53 (3), 1015-1022.
29.Appiah-Opong, R.; Commandeur, J. N.; Istyastono, E.; Bogaards, J. J.; Vermeulen, N. P., Inhibition of human glutathione S-transferases by curcumin and analogues. Xenobiotica 2009, 39 (4), 302-311.
30.King Net國家網路醫院。取自 http://hospital.kingnet.com.tw/medicine/medicine.html?medno=6s0Uus8e6U2d60==
31.詹庭皓,「人類胺基肽酶P (Human Aminopeptidase P):另一個與高血壓有關的酵素抑制劑的設計與合成」,國立中央大學,碩士論文,民國96年。
指導教授 侯敦仁、李文山
(Duen-Ren Hou、Wen-Shan Li)
審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明