博碩士論文 992203013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.12.71.237
姓名 蔡銘育(Ming-Yu Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討
★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units
★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討
★ 合成各類以雜環為核心的分子並研究其非線性光學性質★ 含2,4,6-三取代吡啶及喹喔啉雜環單元之染料分子的合成與其光學性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文的研究目的為系統性的設計與合成數個系列含有Quinoxaline基團之模型分子,希望藉由增加分子的π-電子共軛橋樑與增加分子的分歧數,探討分子結構的改變對雙光子吸收特性的影響。我們透過線性光學的測量結果可以得知模型分子之最大吸收波長、最大放射波長、絕對螢光量子產率與單光子螢光生命期;非線性光學使用奈秒雷射進行雙光子激發效率的量測與光學功率限幅實驗,而使用飛秒雷射進行雙光子激發螢光強度與激發光源強度間關係證實觀察到的螢光是經由雙光子吸收所產生的、雙光子激發截面量測主要使用螢光比較法計算得出。經過一系列的光學實驗操作與探討後,可歸納出以下幾點結果:(1)增加分子中心的π-電子共軛橋樑長度,可以促進提升電子內電荷轉移程度,增加雙光子激發截面值。(2)若增加分子結構之分歧數其雙光子激發效能可以大幅提升。(3)Quinoxaline這類型結構對於雙光子吸收的研究在於其具有較長之螢光生命期,因為此現象容易造成激發態再吸收,可將其運用於光學功率限幅材料中。
摘要(英) The purpose of this study is the systematic design and synthesis of several series containing the Quinoxaline groups model molecules. We want to explore the molecular changes in the structure of two-photon absorption properties of influence by increase in molecular π-electron conjugated bridge and increase the number of molecular branches. After a series of linear and nonlinear optical measurement and discussion can be summarized as the following results. The first is to increase the molecular center of the π-electron conjugation bridge length, can contribute to enhance the degree of charge transfer in the electronics and increase the two-photon excitation cross section value. The second is increasing the number of molecular branches can Promote dramatically of two-photon excitation performance. The third is Quinoxaline this type of structure have much longer fluorescence lifetime, this behavior is likely to cause the excited state re-absorption, it can be applied to optical power limiting marerials.
關鍵字(中) ★ 雙光子吸收
★ 螢光
★ 自吸收
★ 有機染料
關鍵字(英) ★ Nonlinear optical property
★ two-photon absorption
★ Quinoxalinyl-units
★ fluorene
★ Indenofluorene
論文目次 中文摘要...................................I
英文摘要...................................II
謝誌.....................................III
目錄......................................IV
圖表目錄..................................VII
第一章 序論.....................................1
1-1雙光子吸收過程的基本原理..........................1
1-2雙光子吸收材料歷史背景與研究發展...................2
1-2-1 雙光子研究起源...............................2
1-2-2 雙光子吸收材料之發展性 .........................3
1-3雙光子吸收材料之分子設計-文獻回顧...................8
1-3-1 P. N. Prasad與其研究團隊提出之設計概念..........8
1-3-2 S. R. Marder & J. W. Perry與其研究團隊提出之設計概念...11
1-3-3 K. D. Belfield與其研究團隊提出之設計概念........11
1-3-4本實驗室於近年所發展之雙光子染料分子...............12
1-4本論文之研究動機與架構............................14
參考文獻..........................................16
第二章 分子設計與合成.............................18
2-1本論文模型分子之分子設計..........................18
2-2模型分子之合成概述...............................22
2-2-1前驅物合成...................................22
2-2-2最終產物合成.................................34
參考文獻.........................................36
第三章 光學性質探討..............................37
3-1線性光學性質...................................37
3-1-1吸收光譜之量測...............................37
3-1-2螢光發射光譜之量測............................45
3-1-3絕對螢光量子產率之量測.........................49
3-1-4單光子螢光生命期之量測.........................50
3-1-5討論.......................................50
3-2非線性光學性質.................................66
3-2-1雙光子激發螢光光譜之量測.......................66
3-2-2雙光子激發螢光放光量與激發光源強度之關係圖........69
3-2-3奈秒時域的雙光子激發效率光譜之量測...............74
3-2-4飛秒時域的雙光子激發截面光譜量測................78
3-2-5模型分子在奈秒時域之有效光學功率限幅表現..........82
3-2-6討論.......................................86
3-3彙整與討論....................................87
參考文獻.........................................88
第四章 實驗部分.................................89
4-1藥品與溶劑....................................89
4-2實驗儀器與量測條件.............................90
4-2-1化學結構鑑定................................90
4-2-2光學性質量測................................90
4-3詳細合成步驟..................................94
3Ph-4Q之合成...................................133
4Ph-4Q之合成...................................134
FLQ之合成......................................135
2Q之合成.......................................136
2Q-Ph之合成....................................137
2Q-FL之合成....................................138
3Q-Truxene之合成...............................139
化合物(9)之合成..................................94
化合物(10)之合成.................................95
化合物(11)之合成.................................95
化合物(12)之合成.................................96
化合物(13)之合成.................................97
化合物(14)之合成.................................98
化合物(15)之合成.................................99
化合物(16)之合成................................100
化合物(17)之合成................................101
化合物(18)之合成................................102
化合物(19)之合成................................102
化合物(20)之合成................................103
化合物(21)之合成................................103
化合物(22)之合成................................104
化合物(23)之合成................................105
化合物(24)之合成................................105
化合物(25)之合成................................106
化合物(26)之合成................................107
化合物(27)之合成................................107
化合物(28)之合成................................108
化合物(29)之合成................................109
化合物(32a)之合成...............................110
化合物(33a)之合成...............................111
化合物(34a)之合成...............................111
化合物(35a)之合成...............................112
化合物(36a)之合成...............................113
化合物(37a)之合成...............................113
化合物(32b)之合成...............................114
化合物(33b)之合成...............................115
化合物(34b)之合成...............................115
化合物(35b)之合成...............................116
化合物(36b)之合成...............................117
化合物(37b)之合成...............................117
化合物(32c)之合成...............................118
化合物(33c)之合成...............................119
化合物(34c)之合成...............................119
化合物(35c)之合成...............................120
化合物(36c)之合成...............................121
化合物(37c)之合成...............................121
化合物(32d)之合成...............................122
化合物(33d)之合成...............................123
化合物(34d)之合成...............................124
化合物(35d)之合成...............................124
化合物(36d)之合成...............................125
化合物(37d)之合成...............................126
化合物(32e)之合成...............................127
化合物(33e)之合成...............................128
化合物(34e)之合成...............................129
化合物(35e)之合成...............................130
化合物(36e)之合成...............................131
化合物(37e)之合成...............................132
第五章 附圖(模型分子之氫、碳譜)..................141

參考文獻 第一章
[1] M. Göppert-Mayer, Ann. Phys. Lpz. 1931, 9, 273.
[2] W. Kaiser, C. G. B. Garrett, Phys. Rev. Lett. 1961, 7, 229-231.
[3] (a)G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, Opt. Lett. 1995, 20, 435-437; (b)G. S. He, J. D. Bhawalkar, P. N. Prasad, B. A. Reinhardt, Opt. Lett. 1995, 20, 1524-1526; (c)G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, Appl. Phys. Lett. 1995, 67, 2433-2435; (d)J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, J. W. Perry, Opt. Lett. 1997, 22, 1843-1845; (e)C. W. Spangler, J. Mater. Chem. 1999, 9, 2013-2020; (f)E. Zojer, D. Beljonne, T. Kogej, H. Vogel, S. R. Marder, J. W. Perry, J. L. Bredas, J. Chem. Phys. 2002, 116, 3646-3658.
[4] (a)N. D. K. J.D. Bhawalkar, C. F. Zhao and P. N. Prasad, J Clin Laser Med Surg 1997, 15, 201-204; (b)F. LENZ, J. Phys. IV France 1994, 4, 237; (c)W. P. P. E. A. Wachter, W. G. Fisher, H. C. Dees, and M. G. Petersen, Proc. SPIE-Int. Soc. Opt. Eng. 1998, 68, 3269; (d)M. Lal, S. Pakatchi, G. S. He, K. S. Kim, P. N. Prasad, Chem. Mater. 1999, 11, 3012-3014.
[5] (a)T. Gura, Science 1997, 276, 1988-1990; (b)J. D. Bhawalkar, G. S. He, P. N. Prasad, Rep. Prog. Phys. 1996, 59, 1041-1070; (c)J. Mertz, C. Xu, W. W. Webb, Opt. Lett. 1995, 20, 2532-2534; (d)A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani, R. Signorini, Adv. Mater. 2000, 12, 1963-+.
[6] (a)A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, P. M. Rentzepis, Optics Communications 1996, 128, 205-210; (b)J. H. Strickler, W. W. Webb, Opt. Lett. 1991, 16, 1780-1782; (c)M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, Science 1998, 281, 1653-1656; (d)B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, Nature 1999, 398, 51-54; (e)R. J. Campbell, R. Kashyap, Vol. 1499, 1 ed. (Eds.: J. J. Burke, T. A. Shull, N. Imamura), SPIE, Colorado Springs, CO, USA, 1991, pp. 160-164; (f)S. C. Esener, P. M. Rentzepis, Vol. 1499, 1 ed. (Eds.: J. J. Burke, T. A. Shull, N. Imamura), SPIE, Colorado Springs, CO, USA, 1991, pp. 144-147; (g)C.-P. Kuo, Vol. 1499, 1 ed. (Eds.: J. J. Burke, T. A. Shull, N. Imamura), SPIE, Colorado Springs, CO, USA, 1991, pp. 148-159; (h)A. S. Dvornikov, P. M. Rentzepis, Optics Communications 1997, 136, 1-6; (i)H. E. Pudavar, M. P. Joshi, P. N. Prasad, B. A. Reinhardt, Appl. Phys. Lett. 1999, 74, 1338-1340; (j)C. C. Corredor, Z.-L. Huang, K. D. Belfield, A. R. Morales, M. V. Bondar, Chem. Mater. 2007, 19, 5165-5173.
[7] (a)S. M. Kuebler, B. H. Cumpston, S. Ananthavel, S. Barlow, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, D. McCord-Maughon, J. Qin, H. Roeckel, M. C. Rumi, S. R. Marder, J. W. Perry, Vol. 3937, 1 ed. (Eds.: J. W. Perry, A. Scherer), SPIE, San Jose, CA, USA, 2000, pp. 97-105; (b)S. Maruo, K. Ikuta, Vol. 3937, 1 ed. (Eds.: J. W. Perry, A. Scherer), SPIE, San Jose, CA, USA, 2000, pp. 106-112; (c)T. A. Tanaka, S. Kawata, Vol. 3937, 1 ed. (Eds.: J. W. Perry, A. Scherer), SPIE, San Jose, CA, USA, 2000, pp. 92-96.
[8] (a)O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, P. N. Prasad, Chem. Mater. 2000, 12, 284-286; (b)M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, J.-L. Brédas, J. Am. Chem. Soc. 2000, 122, 9500-9510; (c)B. R. Cho, K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J. H. Choi, H. Lee, M. Cho, J. Am. Chem. Soc. 2001, 123, 10039-10045; (d)T.-C. Lin, G. S. He, P. N. Prasad, L.-S. Tan, J. Mater. Chem. 2004, 14, 982-991; (e)Q. Zheng, G. S. He, C. Lu, P. N. Prasad, J. Mater. Chem. 2005, 15, 3488-3493; (f)Q. Zheng, G. S. He, P. N. Prasad, Chem. Mater. 2005, 17, 6004-6011; (g)T.-C. Lin, G. S. He, Q. Zheng, P. N. Prasad, J. Mater. Chem. 2006, 16, 2490-2498.
[9] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, P. N. Prasad, Chem. Mater. 1998, 10, 1863-1874.
[10] R. Kannan, G. S. He, L. X. Yuan, F. M. Xu, P. N. Prasad, A. G. Dombroskie, B. A. Reinhardt, J. W. Baur, R. A. Vaia, L. S. Tan, Chem. Mater. 2001, 13, 1896-1904.
[11] (a)A. R. Morales, K. D. Belfield, J. M. Hales, E. W. Van Stryland, D. J. Hagan, Chem. Mater. 2006, 18, 4972-4980; (b)K. D. Belfield, S. Yao, M. V. Bondar, in Photoresponsive Polymers I, Vol. 213 (Eds.: S. R. Marder, K. S. Lee), Springer-Verlag Berlin, Berlin, 2008, pp. 97-156; (c)S. Yao, K. D. Belfield, Eur. J. Org. Chem. 2012, 3199-3217.
[12] J. M. Hancock, A. P. Gifford, Y. Zhu, Y. Lou, S. A. Jenekhe, Chem. Mater. 2006, 18, 4924-4932.
[13] (a)X. Xu, G. Yu, S. Chen, C. a. Di, Y. Liu, J. Mater. Chem. 2008, 18, 299-305; (b)S. Chen, X. Xu, Y. Liu, W. Qiu, G. Yu, H. Wang, D. Zhu, J. Phys. Chem. C 2006, 111, 1029-1034.
[14] (a)X. B. Cao, F. Jin, Y. F. Li, W. Q. Chen, X. M. Duan, L. M. Yang, New J. Chem. 2009, 33, 1578-1582; (b)K. Susumu, J. A. N. Fisher, J. Zheng, D. N. Beratan, A. G. Yodh, M. J. Therien, J. Phys. Chem. A 2011, 115, 5525-5539; (c)T.-C. Lin, Y.-J. Huang, Y.-F. Chen, C.-L. Hu, Tetrahedron 2010, 66, 1375-1382.

第二章
[1] S. Kajigaeshi, T. Kakinami, M. Moriwaki, T. Tanaka, S. Fujisaki, T. Okamoto, Bull. Chem. Soc. Jpn. 1989, 62, 439-443.
[2] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, P. N. Prasad, Chem. Mater. 1998, 10, 1863-1874.
[3] J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 7215-7216.
[4] K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, S. Lee, J. Org. Chem. 2010, 75, 6244-6251.
[5] J. M. Hancock, A. P. Gifford, Y. Zhu, Y. Lou, S. A. Jenekhe, Chem. Mater. 2006, 18, 4924-4932.
[6] (a)E. Perzon, X. J. Wang, S. Admassie, O. Inganas, M. R. Andersson, Polymer 2006, 47, 4261-4268; (b)J.-B. Baek, S. R. Simko, L.-S. Tan, Macromolecules 2006, 39, 7959-7966.
[7] Y. Jiang, Y.-X. Lu, Y.-X. Cui, Q.-F. Zhou, Y. Ma, J. Pei, Org. Lett. 2007, 9, 4539-4542.
[8] K.-T. Wong, Y.-H. Lin, H.-H. Wu, F. Fungo, Org. Lett. 2007, 9, 4531-4534.
[9] (a)C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. J. Thomas, J. T. Lin, C. P. Hsu, Chem. Eur. J. 2010, 16, 3184-3193; (b)G. Hughes, C. S. Wang, A. S. Batsanov, M. Fern, S. Frank, M. R. Bryce, I. F. Perepichka, A. P. Monkman, B. P. Lyons, Org. Biomol. Chem. 2003, 1, 3069-3077.
[10] S. Merlet, M. Birau, Z. Y. Wang, Org. Lett. 2002, 4, 2157-2159.
[11] (a)S. Setayesh, D. Marsitzky, K. Müllen, Macromolecules 2000, 33, 2016-2020; (b)W. C. Yen, B. Pal, J. S. Yang, Y. C. Hung, S. T. Lin, C. Y. Chao, W. F. Su, Journal of Polymer Science Part a-Polymer Chemistry 2009, 47, 5044-5056.
[12] E. E. Neuteboom, S. C. J. Meskers, E. H. A. Beckers, S. Chopin, R. A. J. Janssen, J. Phys. Chem. A 2006, 110, 12363-12371.
[13] Y. Peng, H. Liu, M. Tang, L. Cai, V. Pike, Chin. J. Chem . 2009, 27, 1339-1344.
[14] X. Li, D. Wang, J. Wu, W. Xu, Synth. Commun. 2005, 35, 2553-2560.
[15] X. Li, Y. Xiao, X. Qian, Org. Lett. 2008, 10, 2885-2888.

第三章
[1] Q. D. Zheng, S. K. Gupta, G. S. He, L. S. Tan, P. N. Prasad, Adv. Funct. Mater. 2008, 18, 2770-2779.
[2] D. Heger, J. Jirkovsky, P. Klan, J. Phys. Chem. A 2005, 109, 6702-6709.
[3] M. Pope, C. S. Swenberg, Electronic processes in organic crystals and polymers, Oxford Science Publications, 1999.
[4] M. Sola, J. Mestres, M. Duran, J. Phys. Chem. 1995, 99, 10752-10758.
[5] Y. Wu, J. Zhang, Z. Bo, Org. Lett. 2007, 9, 4435-4438.
[6] C. Xu, W. W. Webb, J. Opt. Soc. Am. B 1996, 13, 481-491.
[7] T. C. Lin, Y. H. Lee, B. R. Huang, C. L. Hu, Y. K. Li, Tetrahedron 2012, 68, 4935-4949.
[8] S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, J. Phys. Chem. B 1999, 103, 10741-10745.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2012-12-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明