博碩士論文 992203016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.119.160.154
姓名 李明霞(Ming-xia Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以逆吹式氣相層析法分析氣體成份
(Construction of a back-flush GC system for gas analysis)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 氣相層析法應用於工業排放連續監測
★ 煙道氣揮發性有機化合物連續監測方法開發★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物
★ 觸媒式非甲烷總碳氫分析儀開發與驗證★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 大體積固相微萃取水中揮發性有機污染物★ 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為開發一套自動化定溫(isothermal)的氣相層析儀系統(Gas Chromatography, GC),搭配逆吹(back flush)的設計,可達管柱自我調理的功能,而不需高溫烘烤,可大幅降低分析時間與電力耗損,並且兼具長期量測與穩定之特性。藉由分離管柱的組合搭配,可應用於三種不同的量測目標上:一、溫室效應氣體的監控;二、煙道中甲烷與非甲烷總碳氫的量測;三、生質氣體的組成成份分析。
實驗系統的主要架構為兩組二位十孔閥,藉由搭配適宜的管柱組合與偵測器,可達對不同的分析物種分離偵測的目的。管柱為自製的填充管柱,當填充不同的靜相材料,即可應用於不同分析目的之量測工作。
溫室氣體系統量測目標物種有二氧化碳(CO2)、甲烷(CH4)、氧化亞氮(N2O),利用火焰離子偵測器(flame ionization detector, FID)偵測CH4與CO2、電子捕獲偵測器(electron capture detector, ECD)用於偵測N2O。由於CO2無法直接被FID所偵測,因此,CO2進入偵檢器之前,會先經過鎳觸媒(methanizer)轉化裝置使其還原成CH4再進入FID偵測,此系統可於10分鐘內完成一次大氣分析。甲烷與非甲烷總碳氫的部份,則使用單一十孔閥連接FID即可達成分析之目的,每筆實驗分析時間為5分鐘。生質氣體部份,使用GC-FID分析CH4與C2 ~ C4的主要成份;GC-TCD分析H2、O2、N2、CO、CO2等氣體,每筆實驗數據分析時間為5分鐘。
溫室氣體系統實際應用於採樣分析,於2012年02月14日在大台北都會區進行採樣,目的為觀察人為活動對溫室氣體排放之影響與干擾,並將分析結果與地圖繪整成濃度地形圖(contour mapping),其結果顯示部份地區含有高度排放CH4與CO2,明顯為排放熱點(hotspot);N2O的濃度則無明顯排放源,濃度分佈較為一致。而生質氣體系統實際應用於生質物炭化製程產氣組成成份分析,可對複雜成份的主要物種分離且偵測,並且因分析時間快速,可以即時反映製程狀況,藉由產物組成資訊以評估製程中之溫度、原料、效率等參數的影響,作為製程最佳化之依據,使生質能產品發揮最大經濟價值。
摘要(英) In this study, an automated and isothermal gas chromatographic (GC) system was designed and constructed to analyze low-boiling non-methane hydrocarbons (NMHCs) and greenhouse gases (GHGs).
The GC system used two different column sets and detectors. The back-flush design was adopted for the system to permit column self-cleaning and conditioning under an isothermal condition. By doing so, continuous analysis of target gases without losing separation efficiency became possible. Each cycle of analysis took five to ten minutes with a sample aliquot of 2 mL.
To analyze greenhouse gases of CO2, CH4 and N2O, two types of detectors were used, one is the flame ionization detector (FID) for CH4 and CO2 detection, the other is the electron capture detector (ECD) for N2O detection. Because CO2 cannot be detected by FID directly, it must be reduced into CH4 by a Ni catalyst under a hydrogen flow. The system used two packed columns, i.e., Hayesep Q as the precolumn and Porapack Q as the analytical column kept at 70℃ inside the GC oven. The reproducibility (RSD) was better than 1% (N=7). The linearity was greater than 0.9999 for the range of 750 ~ 8200 ppbv for CH4, 150 ~ 1600 ppmv for CO2, and 160 ~ 1700 ppbv for N2O. The limits of detection (LOD) are 138.34 ppbv, 3.42 ppmv and 2.30 ppbv for CH4, CO2 and N2O, respectively. In later study, the system was applied to canister analysis. Contour plots were made to reveal “hotspot” of emission over the great Taipei metropolitan area. In the future, the system can be further expended to include more greenhouse gases, such as SF6.
In the application of determining methane and total non-methane hydrocarbons contents, the system used only one flame ionization detector (FID). Separation was made by a Unibeads 1S pre-column, and a Porapack Q analytical column kept at 70℃. Each cycle of analysis can be completed within 5 minutes.
In the biogas application, we use two different column sets and detectors to target H2, O2, N2, CO, CO2, CH4, and selected low-boiling NMHCs. For the category of permanent gases such as H2, O2, N2, CO, CO2, thermal conductivity detector (TCD) was employed for detection. Separation was made by a Hayesep D pre-column, and two analytical columns packed with Molecular sieve 5A and Hayesep Q, respectively, operated at 70℃. The CH4 and NMHC channel are detected by FID. For this purpose, two different lengths of Unibeads 2S columns were used as the pre-column and analytical column. NMHCs from C1 (CH4) to C4 (1-butene) can be analyzed within 5 minutes. Coupling of this GC system to a biogas reactor will be conducted to monitor on-line the composition of biogas in a continuous manner under various process conditions.
關鍵字(中) ★ 逆吹
★ 溫室氣體
★ 生質氣體
★ 非甲烷碳氫
關鍵字(英) ★ back flush
★ greenhouse gases
★ biogas
★ NMHCs
論文目次 摘要 I
英文摘要 III
謝誌 V
目錄 VII
圖目錄 X
表目錄 XVI
第一章 前言 1
1-1 研究源起 1
1-2 溫室氣體相關量測方法 2
1-3 甲烷與非甲烷總碳氫化合物相關量測方法 7
1-4 生質氣體相關量測方法 13
1-5 方法統整 14
1-6 研究動機 17
第二章 設備與材料 19
2-1 氣體與器材 19
2-1.1 實驗氣體 19
2-1.2 實驗器材 20
2-2系統設計 20
2-2.1逆吹系統 20
2-2.2進樣系統 – 大氣平衡 23
2-2.3 進樣系統 - 壓力控制 25
2-3工作標準品介紹 27
2-3.1 GHGs工作標準品 27
2-3.2 VOCs工作標準品 28
2-4 偵測器介紹 30
2-4.1 熱傳導偵測器 31
2-4.2 火焰離子偵測器 32
2-4.3 電子捕獲偵測器 32
2-5管柱的選擇 33
第三章 溫室氣體之應用 46
3-1 溫室效應氣體介紹 46
3-2 GHGs系統 56
3-2.1 三孔二位電磁閥 - 甲烷分析 58
3-2.2 鎳觸媒甲烷化裝置 59
3-3 結果與討論 62
3-3.1 載流氣體之選擇 62
3-3.2 切除氧氣與不切氧氣系統之探討 63
3-3.3 GHGs層析條件 65
3-3.4 分析品質探討 68
3-4 大台北採樣實驗 71
第四章 甲烷與非甲烷總碳氫之應用 82
4-1 甲烷與非甲烷總碳氫化合物系統 82
第五章 生質氣體之應用 88
5-1 生質氣體介紹 90
5-1.1 生質能源種類 91
5-1.2 生質氣體的製程 92
5-1.3 生質氣體主要成份 95
5-2 生質氣體系統 96
5-2.1 升溫系統 99
5-2.2 分析條件的選定 105
5-2.3 恆溫系統 108
5-3 VOCs系統 119
第六章 結論與未來展望 123
參考文獻 125
參考文獻 1. Kamiński, M.; Kartanowicz, R.; Jastrzębski, D.; Kamiński, M. M., Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography. J. Chromatogr. A 2003, 989 (2), 277-283.
2. Trivett, N. B. A.; Worthy, D. E. J.; Brice, K. A., Surface measurements of carbon dioxide and methane at Alert during an Arctic haze event in April, 1986. Journal of Atmospheric Chemistry 1989, 9 (1), 383-397.
3. Kamiński, M.; Kartanowicz, R.; Jastrzębski, D.; Kamiński, M. M., Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography. J. Chromatogr. A 2003, 989 (2), 277-283.
4. van Rensburg, M.; Botha, A.; Ntsasa, N.; Tshilongo, J.; Leshabane, N., Towards the simultaneous detection of the low nmol/mol range of CO, CH4 and CO2 in nitrogen using GC-FID. Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement 2009, 14 (12), 665-670.
5. 郭秀如, 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用. 中央大學化學研究所:2000.
6. Powell, J.; Jain, P.; Kim, H.; Townsend, T.; Reinhart, D., Changes in Landfill Gas Quality as a Result of Controlled Air Injection. Environmental Science & Technology 2005, 40 (3), 1029-1034.
7. Wang, Y.-h.; Wang, Y.-s.; Sun, Y.; Xu, Z.-j.; Liu, G.-r., An improved gas chromatography for rapid measurement of CO_2, CH_4 and N_2O. Journal of Environmental Sciences (IOS Press) 2006, 18 (1), 162-169.
8. Mohan, J.; Griffin, W. M.; Chris, H.; Paulina, J.; Jeanne, V.; Aranya, V., Life cycle greenhouse gas emissions of Marcellus shale gas. Environmental Research Letters 2011, 6 (3), 034014.
9. 甘錫鴻, 壹.全氟化物氣相層析方法之建立及半導體工業中洗滌器效率評估之應用貳.一氧化碳之平行比測與校正. 中央大學化學研究所:2008.
10. S. van der Laan, R. E. M. N., and H. A. J. Meijer, A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO. Atmospheric Measurement Techniques 2009, 2, 549-559.
11. T. J. Schuck, C. A. M. B., F. Slemr, I. Xueref-Remy, and A. Zahn, Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft. Atmospheric Measurement Techniques 2009, 2, 449-464.
12. NOAA, The Chromatograph for Atmospheric Trace Species (CATS). 1999.
http://www.esrl.noaa.gov/gmd/hats/insitu/cats/stations/index.html
13. Hall, B. D.; Dutton, G. S.; Elkins, J. W., The NOAA nitrous oxide standard scale for atmospheric observations. J. Geophys. Res. 2007, 112 (D9), D09305.
14. Wang, Y.; Wang, Y.; Ling, H., A New Carrier Gas Type for Accurate Measurement of N2O by GC-ECD. Advances in Atmospheric Sciences 2010, 27 (6), 1322-1330.
15. Moore, F. L.; Elkins, J. W.; Ray, E. A.; Dutton, G. S.; Dunn, R. E.; Fahey, D. W.; McLaughlin, R. J.; Thompson, T. L.; Romashkin, P. A.; Hurst, D. F.; Wamsley, P. R., Balloonborne in situ gas chromatograph for measurements in the troposphere and stratosphere. J. Geophys. Res. 2003, 108 (D5), 8330.
16. Hall, B. D.; Dutton, G. S.; Mondeel, D. J.; Nance, J. D.; Rigby, M.; Butler, J. H.; Moore, F. L.; Hurst, D. F.; Elkins, J. W., Improving measurements of SF6 for the study of atmospheric transport and emissions. Atmospheric Measurement Techniques 2011, 4, 2441–2451.
17. 行政院環保署環境檢驗所, 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法 - 線上火焰離子化偵測法. NIEA A723.73B 2012.
18. USEPA, Method 25:Determination of total gaseous nonmethane organic emissions as carbon.
19. Maris, C.; Chung, M. Y.; Lueb, R.; Krischke, U.; Meller, R.; Fox, M. J.; Paulson, S. E., Development of instrumentation for simultaneous analysis of total non-methane organic carbon and volatile organic compounds in ambient air. Atmos. Environ. 2003, 37, Supplement 2 (0), 149-158.
20. Cox, R. D., Determirqtion of Low Levels of Total Nonmethane Hydrocarbon Content in Ambient Air. Environmental Science & Technology 1982, 16, 57-61.
21. Jan, T.-W.; Adav, S. S.; Lee, D. J.; Wu, R. M.; Su, A.; Tay, J.-H., Hydrogen Fermentation and Methane Production from Sludge with Pretreatments†. Energy & Fuels 2007, 22 (1), 98-102.
22. Finocchio, E.; Montanari, T.; Garuti, G.; Pistarino, C.; Federici, F.; Cugino, M.; Busca, G., Purification of Biogases from Siloxanes by Adsorption: On the Regenerability of Activated Carbon Sorbents. Energy & Fuels 2009, 23 (8), 4156-4159.
23. Gaur, A.; Park, J.-W.; Jang, J.-H.; Maken, S.; Lee, J.; Song, H.-J., Characteristics of Alkaline Wastewater Neutralization for CO2 Capture from Landfill Gas (LFG). Energy & Fuels 2009, 23 (11), 5467-5473.
24. Pyl, S. P.; Schietekat, C. M.; Van Geem, K. M.; Reyniers, M.-F.; Vercammen, J.; Beens, J.; Marin, G. B., Rapeseed oil methyl ester pyrolysis: On-line product analysis using comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2011, 1218 (21), 3217-3223.
25. Muradov, N.; Smith, F., Thermocatalytic Conversion of Landfill Gas and Biogas to Alternative Transportation Fuels. Energy & Fuels 2008, 22 (3), 2053-2060.
26. Wang, J.-L.; Kuo, S.-R.; Ma, S.-S.; Chen, T.-Y., Construction of a low-cost automated chromatographic system for the measurement of ambient methane. Anal. Chim. Acta 2001, 448 (1-2), 187-193.
27. Dlugokencky, E. J.; Steele, L. P.; Lang, P. M.; Masarie, K. A., Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements. J. Geophys. Res. 1995, 100 (D11), 23103-23113.
28. 李雅琳, 以重量法製備微量揮發性有機化合物標準氣體之研究. 中央大學化學研究所:2005.
29. Wang, J.-L.; Kuo, S.-R.; Ma, S.-S.; Chen, T.-Y., Construction of a low-cost automated chromatographic system for the measurement of ambient methane. Anal. Chim. Acta 2001, 448 (1-2), 187-193.
30. IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for Policymakers, Page 3. 2007.
31. Silva, J. M. N.; Carreiras, J. M. B.; Rosa, I.; Pereira, J. M. C., Greenhouse gas emissions from shifting cultivation in the tropics, including uncertainty and sensitivity analysis. J. Geophys. Res. 2011, 116 (D20), D20304.
32. Kendall, A.; Price, L., Incorporating Time-Corrected Life Cycle Greenhouse Gas Emissions in Vehicle Regulations. Environmental Science & Technology 2012, 46 (5), 2557-2563.
33. National Oceanic and Atmospheric Administration (NOAA). 2012.
http://www.esrl.noaa.gov/gmd/ccgg/trends/
34. Hofmann, D. J.; Butler, J. H.; Dlugokencky, E. J.; Elkings, J. W.; Masarie, K.; Montzka, S. A.; Tans, P., The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. 2011, 58.
35. 環保署, 國家排放清冊初稿. 2008.
36. Piemonte, V.; Gironi, F., Land-use change emissions: How green are the bioplastics? Environmental Progress & Sustainable Energy 2011, 30 (4), 685-691.
37. Advanced Global Atmospheric Gases Experiment (AGAGE). 2011.
http://agage.eas.gatech.edu/data.htm
38. Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O., Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems 1998, 52 (2), 225-248.
39. Nevison, C.; Holland, E., A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer. J. Geophys. Res. 1997, 102 (D21), 25519-25536.
40. Kroeze, C.; Mosier, A.; Bouwman, L., Closing the global N2O budget: A retrospective analysis 1500–1994. Global Biogeochem. Cycles 1999, 13 (1), 1-8.
41. Battle, M.; Bender, M.; Sowers, T.; Tans, P. P.; Butler, J. H.; Elkins, J. W.; Ellis, J. T.; Conway, T.; Zhang, N.; Lang, P.; Clarket, A. D., Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 1996, 383 (6597), 231-235.
42. 環保署, 中華民國第二版國家通訊. 2008.
43. WMO World Data Centre for Greenhouse Gases (WMO WDCGG)
http://gaw.kishou.go.jp/wdcgg/
44. Carbon Cycle Gases Lulin, Taiwan Time Series. 2012.
http://www.esrl.noaa.gov/gmd/dv/site/LUL.html
45. 黃新維, 利用中孔洞矽分子篩MCM-41分離、量測大氣二氧化碳. 中央大學化學研究所:2010.
46. 歐陽長風, 一氧化碳背景值自動監測系統之架構. 中央大學化學研究所:2003.
47. Rostrupnielsen, J. R.; Hansen, J. H. B., CO2-Reforming of Methane over Transition Metals. J. Catal. 1993, 144 (1), 38-49.
48. Bradford, M.; Vannice, M., CO2 Reforming of CH4. Catalysis Reviews: Science & Engineering 1999, 41 (1), 1.
49. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation: is it predictable?: What to do? Applied Catalysis A: General 2001, 212 (1-2), 3-16.
50. Wang, J.-L.; Chang, C.-J.; Lin, Y.-H., Concentration distributions of anthropogenic halocarbons over a metropolitan area. Chemosphere 1998, 36 (10), 2391-2400.
51. Wu, B.-Z.; Chang, C.-C.; Sree, U.; Chiu, K.; Lo, J.-G., Measurement of non-methane hydrocarbons in Taipei city and their impact on ozone formation in relation to air quality. Anal. Chim. Acta 2006, 576 (1), 91-99.
52. Zhang, Y.; Yue, D.; Nie, Y., Greenhouse gas emissions from two-stage landfilling of municipal solid waste. Atmos. Environ. 2012, 55 (0), 139-143.
53. 行政院環境保護署, 揮發性有機物空氣污染管制及排放標準. 2011.
54. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hübler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 2001, 292, (5517), 719-723.
55. 經濟部能源局, 中華民國九十六年能源統計手冊. 2007.
56. http://www.fao.org/nr/nr-home/en/
57. Bridgwater, A. V.; Peacocke, G. V. C., Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 2000, 4 (1), 1-73.
58. Chen, T.; Wu, C.; Liu, R., Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production. Bioresour. Technol. 2011, 102 (19), 9236-9240.
59. Gupta, K. K.; Rehman, A.; Sarviya, R. M., Bio-fuels for the gas turbine: A review. Renewable and Sustainable Energy Reviews 2010, 14 (9), 2946-2955.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明