博碩士論文 992203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.145.170.2
姓名 林岱縈(Tai-ying Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 空氣中臭味還原性硫化物線上濃縮與分析
(On-line enrichment and analysis of reduced sulfur compounds in the atmosphere)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 揮發性還原性硫化物(volatile reduced sulfur compounds, RSCs)普遍存在於大氣中,其嗅覺閥值甚低(數個ppbv),容易造成環境臭味問題而影響生活品質,此外對全球大氣也扮演著氣候效應(climate effect)的角色。本研究的目的是希望建立或改良分析周界RSCs如H2S、C2H5SH、CH3SCH3、CS2及CH3SSCH3的方法;由於RSCs濃度低、反應性高、生命期短、在分析設備的管線或採樣容器內會有易沾黏的特性,其中又以H2S最易受水氣及氧化物反應而損失,更增加了檢測的難度。
周界RSCs濃度低至ppbv至 pptv,往往因濃度低於偵測器偵測極限而不利偵測,故本次研究企圖尋找一適合吸附材料,佐以降溫,將RSCs先行濃縮後,再熱脫附進入氣相層析儀將物種分離,偵測器選用對硫元素靈敏性佳之脈衝式火焰光度( pulsed flame photometric detector, PFPD )。
現今最常用以捕捉RSCs的吸附材料為Molecular sieve 5A及Tenax TA,Molecular sieve 5A主要捕捉H2S,Tenax TA則適合捕捉其他硫化物。本次研究希冀能找到單一材料捕捉所有常見的RSCs,並且在效率上優於以上材料。經嘗試以微孔( < 20Å )、中孔( 20Å-500Å )、大孔洞( >500Å )等諸多孔洞材料觀察脫附溫度曲線,發現Unibeads 1S不僅脫附溫度曲線表現良好且捕捉效率明顯優於其他材料,捕捉H2S偵測極限可低至0.13 ppbv,RSD值為 1.78%,檢量線線性高達0.999以上,明顯優於Molecular sieve 5A,而捕捉C2H5SH的效率也優於Tenax TA,在CS2、DMS及DMDS表現上則和Tenax TA相近,C2H5SH、DMS、CS2及DMDS的RSD值皆低於1.76%且線性皆0.995以上,其中DMS、CS2及DMDS偵測極限皆低至0.11 ppbv以下,因此使用Unibeads 1S單一材料即可取代現今常用之Molecular sieve 5A、Tenax TA作為RSCs的最佳線上濃縮介質,並且以此吸附劑作為前濃縮介質並搭配自動化前濃縮系統而成功應用於線上(on-line)及離線(off-line)之RSCs實地量測。
摘要(英) Reduced sulfur compounds (RSCs) are commonly found in ambient air, which easily give off foul odor in the environment at very low concentrations, thus affecting the quality of life for residents near the sources. In addition, RSCs also have significant implications in global climate change. The objective of this research is to develop a GC technique to analyze ambient H2S, C2H5SH, CH3SCH3, CS2, and CH3SSCH3 of RSCs using pulsed flame photometric detector (PFPD). Common challenges in the analysis of ambient RSCs include: 1. low concentration detection, 2. sample integrity due to high reactivity, 3. wall effect arising from the “stickiness” of RSCs on tubing or container’s inner surface, 4. the loss of H2S to water or oxidation, etc.
Ambient RSCs are often found at levels from ppbv to pptv, which is below the detection limits of a GC detector. As a result, a preconcentration step is needed prior to GC analysis to allow quantitative analysis. The performance of preconcentration relies largely on the proper selection of sorption materials. In this research, several materials tested at various trapping temperatures for the low levels of RSCs.
The Taiwan EPA method (NIEA A701.11C) uses Molecular Sieve 5A and Tenax TA to preconcentrate H2S and other sulfur compounds, respectively. This study is aimed at finding a single suitable sorption material which can enrich all RSCs within each sample aliquot with improved efficiency, manifested by better precision, linearity and lower limits of detection (LOD). The pore sizes of the test materials ranged from microporous (< 20Å) to macroporous ( >500Å ). Of the 17 materials tested, it was found that Unibeads 1S out-performed the rest in all criteria of quality assurance. For instance, the LOD is as low as 0.13 ppbv, the RSD is 1.78%, and the linearity is 0.999 (R2) for H2S, suggesting Unibead 1S is better than Molecular sieve 5A in H2S preconcentration. Unibeads 1S also showed better efficiency than Tenax TA for C2H5SH, and comparable performance for CS2、DMS and DMDS. With Unibeads 1S, the RSD for C2H5SH、DMS、CS2 and DMDS is better than 1.76%, the linearity is greater than 0.995, and the LOD (3σ) for DMS、CS2 and DMDS is below 0.11 ppbv. As a result, Unibeads 1S can replace Molecular sieve 5A and Tenax TA as the better choice for online preconcentration of ambient RSCs.
Having proven the performance of Unibeads 1S, a thermal-desorption (TD) GC-PFPD was used to on-line monitor the ambient RSCs. Grab samples collected from potential sources of RSCs were also analyzed by TD GC-PFPD and the results were reported.
關鍵字(中) ★ 還原性硫化物 關鍵字(英) ★ reduced sulfur compounds
論文目次 中文摘要 I
英文摘要 III
謝誌 V
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 還原性硫化物 1
1-2 還原性硫化物檢測之非GC方法 12
1-2.1 半導體感測器 12
1-2.2 電化學感測器 14
1-3 還原性硫化物GC檢測之偵測器 15
1-3.1 原子發射偵測器(AED) 15
1-3.2 火焰光度偵測器(FPD) 17
1-3.3 硫化學發光偵測器(SCD) 19
1-3.4 脈衝式火焰光度偵測器(PFPD) 22
1-4 硫化物相關前濃縮方法 28
1-5 美國及台灣RSCs標準方法及文獻實地量測RSCs之方法 33
第二章 設備與材料 36
第三章 研究方法 39
3-1 自製吸附管 40
3-2 分析偵測系統 44
3-3 標準品 47
3-3.1 自製滲透管 47
3-3.2 自製動態稀釋裝置 51
3-3.3 滲透管效益評估 54
3-3.4 商業化動態稀釋裝置 57
第四章 結果與討論 60
4-1 light RSCs (H2S)吸附劑之探討 60
4-1 不同孔洞範圍對H2S脫附溫度曲線 61
4-1.2 Unibeads 1S與台灣EPA標準方法之Molecular sieve 5A比較 66
4-2 heavy RSCs其他硫化物吸附劑的探討 70
4-2.1 副產物二乙基乙硫 73
4-2.2 Unibeads 1S 與台灣EPA標準方法之Tenax TA比較 77
4-3 不同管材對RSCs之探討 83
4-4 Nafion dryer 除水損失率討論 86
第五章 實地量測 88
第六章 結論與未來展望 96
第七章 參考文獻 97
參考文獻 1. 美國國家環境保護局, http://www.epa.gov/ttn/atw/orig189.html
2. Smet, E.; Lens, P.; Langenhove, H. V., Treatment of Waste Gases Contaminated with Odorous Sulfur Compounds. Critical Reviews in Environmental Science and Technology 1998, 28 (1), 89-117.
3. Leu, M.-T.; Smith, R. H., Rate constants for the gas-phase reaction between hydroxyl and hydrogen sulfide over the temperature range 228 to 518 K. The Journal of Physical Chemistry 1982, 86 (1), 73-81.
4. McKee, M. L.; Wine, P. H., Ab Initio Study of the Atmospheric Oxidation of CS2. Journal of the American Chemical Society 2001, 123 (10), 2344-2353.
5. Jensen, N. R.; Hjorth, J.; Lohse, C.; Skov, H.; Restelll, G., Products and mechanisms of the gas phase reactions of NO3 with CH3SCH3, CD3SCD3, CH3SH and CH3SSCH3. Journal of Atmospheric Chemistry 1992, 14 (1), 95-108.
6. Likens, G. E.; Bormann, F. H., Acid Rain: A Serious Regional Environmental Problem. Science 1974, 184 (4142), 1176-1179.
7. Parungo, F.; Nagamoto, C.; Hoyt, S.; Humberto Bravo, A., The investigation of air quality and acid rain over the Gulf of Mexico. Atmospheric Environment. Part A. General Topics 1990, 24 (1), 109-123.
8. IPCC, http://www.ipcc.ch/index.htm
9. http://www.mri-jma.go.jp/Project/1-21/1-21-1/aerosol-en.htm
10. M. Andreae; H. Annegarn; L. Barrie; J. Feichter; D. Hegg; A. Jayaraman; R. Leaitch; D. Murphy; J. Nganga; G. Pitari Aerosol, their direct and indirect effects
11. Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A.; Hansen, J. E.; Hofmann, D. J., Climate Forcing by Anthropogenic Aerosols. Science 1992, 255 (5043), 423-430.
12. Andreae, M. O.; Crutzen, P. J., Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry. Science 1997, 276 (5315), 1052-1058.
13. Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E., Sulfur emissions to the atmosphere from natural sourees. Journal of Atmospheric Chemistry 1992, 14 (1), 315-337.
14. Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R., Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes. Annual Review of Plant Biology 2011, 62 (1), 157-184.
15. Watts, S. F., The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmospheric Environment 2000, 34 (5), 761-779.
16. Watts, S. F.; Roberts, C. N., Hydrogen sulfide from car catalytic converters. Atmospheric Environment 1998, 33 (1), 169-170.
17. 行政院環境保護署,揮發性有機物空氣汙染管制及排放標準 (2011)
18. 行政院環保署, 空氣汙染防治法, 固定汙染源空氣汙染物排放標準, http://law.epa.gov.tw/zh-tw/laws/631743675.html
19. Kroneld, M.; Novikov, S.; Saukko, S.; Kuivalainen, P.; Kostamo, P.; Lantto, V., Gas sensing properties of SnO2 thin films grown by MBE. Sensors and actuators. B, Chemical 2006, 118 (1-2), 110-114
20. Tierney, M. J.; Kim, H. O. L., Electrochemical gas sensor with extremely fast response times. Analytical Chemistry 1993, 65 (23), 3435-3440.
21. Aalto University, http://nano.aalto.fi/en/research_groups/electron_physics/ research/gas_sensors/
22. http://www.citytech.com/loader/frame_loader.asp?page=http://www.citytech.com/technology/toxic-sensors.asp
23. Quimby, B. D.; Sullivan, J. J., Evaluation of a microwave cavity, discharge tube, and gas flow system for combined gas chromatography-atomic emission detection. Analytical Chemistry 1990, 62 (10), 1027-1034
24. Sullivan, J. J.; Quimby, B. D., Characterization of a computerized photodiode array spectrometer for gas chromatography-atomic emission spectrometry. Analytical Chemistry 1990, 62 (10), 1034-1043.
25. CHEMWIKI, http://chemwiki.ucdavis.edu/
26. Brody S. S.; Chaney J. E., Flame photometric detector. The application of a specific detector of phosphorous and for sulfuric compounds – sensitive to sub-nanogram quantities. J. gas Chromatogr. 1966, 2, 42-46
27. http://www.files.chem.vt.edu/chem-ed/sep/gc/detector/fpd.html
28. Patterson, P. L.; Howe, R. L.; Abu-Shumays, A., A dual-flame photometric detector for sulfur and phosphorus compounds in gas chromatograph effluents. Analytical Chemistry 1978, 50 (2), 339-344.
29. Benner, R. L.; Stedman, D. H., Universal sulfur detection by chemiluminescence. Analytical Chemistry 1989, 61 (11), 1268-1271.
30. Shearer, R. L., Development of flameless sulfur chemiluminescence detection: application to gas chromatography. Analytical Chemistry 1992, 64 (18), 2192-2196.
31. Cheskis, S.; Atar, E.; Amirav, A., Pulsed-flame photometer: a novel gas chromatography detector. Analytical Chemistry 1993, 65 (5), 539-555.
32. Amirav, A.; Jing, H., Pulsed Flame Photometer Detector for Gas Chromatography. Analytical Chemistry 1995, 67 (18), 3305-3318
33. O.I Analytical, USA, http://www.oico.com/
34. Wardencki, W., Problems with the determination of environmental sulphur compounds by gas chromatography. Journal of Chromatography A 1998, 793 (1), 1-19.
35. Braman, R. S.; Ammons, J. M.; Bricker, J. L., Preconcentration and determination of hydrogen sulfide in air by flame photometric detection. Analytical Chemistry 1978, 50 (7), 992-996.
36. Kagel, R. A.; Farwell, S. O., Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection. Analytical Chemistry 1986, 58 (6), 1197-1202.
37. Persson, C.; Leck, C., Determination of Reduced Sulfur Compounds in the Atmosphere Using a Cotton Scrubber for Oxidant Removal and Gas Chromatography with Flame Photometric Detection. Analytical Chemistry 1994, 66 (7), 983-987.
38. Inomata, Y.; Matsunaga, K.; Murai, Y.; Osada, K.; Iwasaka, Y., Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography–flame photometric detection. Journal of Chromatography A 1999, 864 (1), 111-119.
39. Method 15, Determination of hydrogen sulfide, carbonyl sulfide, and carbon disulfide emissions from stationary sources, USEPA
40. Method 16, Semicontinuous determination of sulfur emissions from stationary sources, USEPA
41. Trabue, S.; Scoggin, K.; Mitloehner, F.; Li, H.; Burns, R.; Xin, H., Field sampling method for quantifying volatile sulfur compounds from animal feeding operations. Atmospheric Environment 2008, 42 (14), 3332-3341.
42. Susaya, J.; Kim, K.-H.; Phan, N.-T.; Kim, J.-C., Assessment of reduced sulfur compounds in ambient air as malodor components in an urban area. Atmospheric Environment 2011, 45 (20), 3381-3390.
43. Kim, K.-H.; Jeon, E.-C.; Choi, Y.-J.; Koo, Y.-S., The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex. Atmospheric Environment 2006, 40 (24), 4478-4490.
44. Guo, H.; Simpson, I. J.; Ding, A. J.; Wang, T.; Saunders, S. M.; Wang, T. J.; Cheng, H. R.; Barletta, B.; Meinardi, S.; Blake, D. R.; Rowland, F. S., Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: Impact of anthropogenic and biogenic sources. Atmospheric Environment 2010, 44 (31), 3805-3813.
45. Berresheim, H.; Vulcan, V. D., Vertical distributions of COS, CS2, DMS and other sulfur compounds in a loblolly pine forest. Atmospheric Environment. Part A. General Topics 1992, 26 (11), 2031-2036.
46. Pio, C. A.; Cerqueira, M. A.; Castro, L. M.; Salgueiro, M. L., Sulphur and nitrogen compounds in variable marine/continental air masses at the southwest European coast. Atmospheric Environment 1996, 30 (18), 3115-3127.
47. Nunes, L.; Tavares, T.; Dippel, J.; Jaeschke, W., Measurements of Atmospheric Concentrations of Reduced Sulphur Compounds in the All Saints Bay Area in Bahia, Brazil. Journal of Atmospheric Chemistry 2005, 50 (1), 79-100.
48. 顏敬秦, 以滲透管法製備OVOC標準氣體並應用於線上檢量, 中央大學化學研究所 碩士論文 (2011)
49. Rosenfeld, P. E.; Henry, C. L.; Dills, R. L.; Harrison, R. B., Comparison of Odor Emissions from Three Different Biosolids Applied to Forest Soil. Water, Air, & Soil Pollution 2001, 127 (1), 173-191.
50. Lestremau, F.; Andersson, F. A. T.; Desauziers, V., Investigation of Artefact Formation During Analysis of Volatile Sulphur Compounds Using Solid Phase Microextraction (SPME). Chromatographia 2004, 59 (9), 607-613.
指導教授 王家麟(Jai-lin Wang) 審核日期 2012-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明