博碩士論文 992203602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.224.64.226
姓名 朴瑪莉(Mery Budiarti)  查詢紙本館藏   畢業系所 化學學系
論文名稱 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
(Highly Soluble Dithienothiophene (DTT) andTetrathienoacene (TTA ) Derivatives Development forOrganic Thin Film Transistor (OTFT) Application )
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 雙極性磷光主體材料之合成與鑑定及其在有機發光二極體之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究延續實驗室之併環噻吩開發,製備出具有高穩定性可溶性有機半導體材料,這兩個可溶性半導體材料皆具有良好的共軛程度,於三併環噻吩以及四併環噻的分子中引入長碳鏈,並在其兩端接上苯噻吩,兩個新的可溶性半導體材料即被合成出,且合成後的材料也將探討其物理性質與電性表現。其中 DBT-TTAR2 此材料具有較低的 LOMO 值、較高的 HOMO 值、擁有較低的能帶隙,有助於載子的注入傳輸,在文獻中 DP-DTT,P-type 半導體材料,其載子移動率分別為 0.42cm2/Vs,而本論文中在分子內引入長碳鏈使其變成可溶性半導體材料,有機會運用溶液製程方式將材料鍍上元件;延伸分子共軛程度,增加了 π-π 混成軌域,希望能夠提高其載子移動效率,有不錯的電性表現。
摘要(英) This research focused on the development of highly soluble dithienothiophene (DTT) and tetrathienoacene (TTA) derivatives for organic thin film transistor (OTFT) application. Two new highly soluble thienoacenes derivative, DBT-DTTR2 and DBT-TTAR2 were synthesized. The enhancement of π – π molecular conjugation with dibenzo[b,d]thiophene (DBT) group and increasing its solubility properties with introducing alkyl side chains on both of DTT and TTA core. The chemical and physical characterizing results which were included characterizing theirs optical, electrochemical and thermal properties shows that DBT-TTAR2 has a better performance than DBT-DTTR2 for OTFT application. DBT-DTTR2 and DBT-TTAR2 were fabricated as a p-type semiconductor of OTFT by solution process at Industrial Technology Research Institute. Both compounds were predicted can bring out a high mobility value which is around 0.1 cm2/Vs. It was compared with another organic semiconductor based on thienoacene derivatives, DP-DTT (μ = 0.42 cm2/Vs) which has a good stability.
關鍵字(中) ★ 有基薄膜電晶體
★ 三併環噻吩
★ 四併環噻吩
★ 溶液製成
關鍵字(英) ★ organic thin film transistor
★ dithienothiophene
★ solution process
★ tetrathienothiophene
論文目次 A B S T R A C T i
摘 要 ii
A C K N O W L E D G E M E N T S iii
T A B L E O F C O N T E N T S iv
L I S T O F F I G U R E S vi
L I S T O F T A B L E S ix
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Purpose 4
CHAPTER 2 OVERVIEW 5
2.1 Introduction of Organic Semiconductor (OSC) 5
2.2 Properties of Organic Semiconductor (OSC) 7
2.3 Organic Semiconductor Based On Thienoacene Derivative 16
2.4 Organic Thin Film Transistor (OTFT) 20
CHAPTER 3 EXPERIMENTAL SECTION 29
3.1 Materials and Methods 29
3.1.1 Materials 29
3.1.2 Methods 30
3.1.2.1 Nuclear Magnetic Resonance (NMR) 30
3.1.2.2 High Resolution Mass Spectrometer 30
3.1.2.3 Ultraviolet Visible Spectrometer (UV-vis) 31
3.1.2.4 Differential Scanning Calorimeter (DSC) 31
3.1.2.5 Thermo Gravimetric Analysis (TGA) 31
3.1.2.6 Electrochemical Analyzer – Differential Pulse Parameter (DPV) 31
3.2 Synthesis 32
3.2.1 Synthetic Scheme Route 32
3.2.1.1 DBT-DTTR2 33
3.2.1.2 DBT-TTAR2 34
3.2.2 Synthetic of 2,6-bis(benzo[b]thiophen-2-yl)-3,5-diundecanyldithieno[3,2-b:2’’,3’’-d]thiophene or DBT-DTTR2 35
3.2.2.1 Tetrabromothiophene (1a) 35
3.2.2.2 1,1’-(3,4-Dibromo-2,5-thienyl)didodecanol (2a) 35
3.2.2.3 1,1’-(3,4-Dibromo-2,5-thienyl)didodecanone (3a) 36
3.2.2.4 2,6-Dicarboethoxy-3,5-diundecanyldithieno[3,2-b:2’3’-d]-thiophene (4a) 36
3.2.2.5 2,6-Dicarboxylate acid-3,5-diundecanyldithieno[3,2-b:2’3’-d]-thiophene (5a) 37
3.2.2.6 3,5-Diundecanyldithieno[3,2-b:2’3’-d]thiophene (6a) 37
3.2.2.7 2,6-Dibromo-3,5-diundecanyldithieno[3,2-b:2’3’-d]thiophene (7a) 38
3.2.2.8 2,6-Bis(benzo[b]thiophen-2-yl)-3,5-diundecanyldithieno[3,2-b:2’’,3’’-d]thiophene or DBT-DTTR2 (8a) 38
3.2.3 Synthetic of 2,6-bis(benzo[b]thiophen-2-yl)-3,7-dipentadecyltetrathienoacene or DBT-TTAR2 39
3.2.3.1 2,5-Di(1,1’-pentadecanone)-3,6-dibromo-thieno[3,2-b]thiophene (1b) 39
3.2.3.2 2,6-Dicarboethoxy-3,7-dipentadecyltetrathienoacene (2b) 40
3.2.3.3 3,7-Dipentadecyltetrathienoacene-2,6-dicarboxylate acid (3b) 40
3.2.3.4 3,7-Dipentadecyltetrathienoacene (4b) 41
3.2.3.5 2,6-Dibromo-3,7-dipentadecyltetrathienoacene (5b) 41
3.2.3.6 2,6-Bis(benzo[b]thiophen-2-yl)-3,7-dipentadecyltetrathienoacene or DBT-TTAR2 (6b) 42
CHAPTER 4 RESULT AND DISCUSSION 43
4.1 Synthesis 43
4.1.1 DBT-DTTR2 43
4.1.2 DBT-TTAR2 44
4.2 Molecular Characterization 44
4.2.1 Optical Properties 44
4.2.2 Electrochemical properties 49
4.2.3 Thermal properties 53
4.3 Organic Thin Film Transistor Fabrication and Characterization 57
CHAPTER 5 CONCLUSIONS 59
R E F E R E N C E 61
CHAPTER 6 APPENDIX 65
6.1 DBT-DTTR2 (NMR) 65
6.2 DBT-TTAR2 (NMR) 69
6.3 DBT-TTAR2 (Mass Spectroscopy) 72
參考文獻 [1] Bredas, J. L. 2002. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proceedings of the National Academy of Sciences, 99, 5804.
[2] Brusso, J. L., Hirst, O. D., Dadvand, A., Ganesan, S., Cicoira, F., Robertson, C. M., Oakley, R. T., Rosei, F.and Perepichka, D. F. 2008. Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials, 20, 2484.
[3] Dimitrakopoulos, C. D.and Malenfant, P. R. L. 2002. Organic Thin Film Transistors for Large Area Electronics. Advanced Materials, 14, 99.
[4] Dimitrakopoulos, C. D.and Mascaro, D. J. 2001. Organic thin-film transistors: A review of recent advances. IBM Journal of Research and Development, 45, 11.
[5] Dong, H., Wang, C. and Hu, W. 2010. High performance organic semiconductors for field-effect transistors. Chemical Communications, 46, 5211.
[6] Fan, C.-L., Lin, Y.-Z. and Huang, C.-H. 2012. A High-Performance Planar Organic Thin-Film Transistor. SPIE Newsroom.
[7] Gupta, D. 2004. Organic Electronic II.
[8] Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Ponomarenko, S., Kirchmeyer, S.and Weber, W. 2003. Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors. Advanced Materials, 15, 917.
[9] Hamadani, BH. 2007. Disertation : Electronic Charge Injection and Transport in Organic Field-Effect Transistors. Rice University, Houston, Texas.
[10] Herlogsson, L. 2011. Dissertation : Electrolyte-Gated Organic Thin-Film Transistors. Linkoping Studies in Science and Technology, Sweden.
[11] Hu, Z., Fu, B., Aiyar, A.and Reichmanis, E. 2012. Synthesis and characterization of graft polymethacrylates containing conducting diphenyldithiophene for organic thin-film transistors. Journal of Polymer Science Part A: Polymer Chemistry, 50, 199.
[12] Jakobsson, FLE. 2008. Dissertations : Charge Transport Modulation in Organic Electronic Diodes. Linkoping Studies in Science and Technology, Sweden.
[13] Klauk, H. 2010. Organic thin-film transistors. Chemical Society Reviews, 39, 2643.
[14] Knupfer, M., Peisert, H.and Schwieger, T. 2001. Band-gap and correlation effects in the organic semiconductor Alq3. Physical Review B, 65.
[15] Li, FM., Arokia N., Yiliang W., and Beng SO. 2011. Organic Thin Film Transistor Integration : A Hybrid Approach, 1st Edition. Wiley-VCH Verlag GmbH & Co. KGaA.
[16] Li, J., Qin, F., Li, C. M., Bao, Q., Chan-Park, M. B., Zhang, W., Qin, J.and Ong, B. S. 2008. High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles. Chemistry of Materials, 20, 2057.
[17] Liu, Y., Yu, G.and Liu, Y. 2010. The design and synthesis of fused thiophenes and their applications in organic field-effect transistors. Science China Chemistry, 53, 779.
[18] Mas-Torrent, M. and Rovira, C. 2011. Role of Molecular Order and Solid-State Structure in Organic Field-Effect Transistors. Chemical Reviews, 111, 4833.
[19] Misra, A., Pankaj K., Ritu S., SK. Dhawan, MN. Kamalasanan and Subhas C. 2005. Electrochemical and Optical Studies of Conjugated Polymers for Three Primary Colours. Indian Journal of Pure & Applied Physics, 43, 921 – 925.
[20] Newman, C. R., Frisbie, C. D., da Silva Filho, D. A., Brédas, J.-L., Ewbank, P. C.and Mann, K. R. 2004. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chemistry of Materials, 16, 4436.
[21] Orgiu, E. 2008. Dissertation : Organic Thin Film Transistors : An Investigation of Device Properties, Applications and Market Perspectives. Degli Studi Di Cagliari University, Cagliari.
[22] Qiao, Y., Wei, Z., Risko, C., Li, H., Brédas, J.-L., Xu, W.and Zhu, D. 2012. Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. Journal of Materials Chemistry, 22, 1313.
[23] Qiu, L., Lee, W. H., Wang, X., Kim, J. S., Lim, J. A., Kwak, D., Lee, S.and Cho, K. 2009. Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Advanced Materials, 21, 1349.
[24] Sun, Y., Liu, Y., Ma, Y., Di, C., Wang, Y., Wu, W., Yu, G., Hu, W.and Zhu, D. 2006. Organic thin-film transistors with high mobilities and low operating voltages based on 5,5[sup ʹ]-bis-biphenyl-dithieno[3,2-b:2[sup ʹ],3[sup ʹ]-d]thiophene semiconductor and polymer gate dielectric. Applied Physics Letters, 88, 242113.
[25] Takimiya, K., Shinamura, S., Osaka, I. and Miyazaki, E. 2011. Thienoacene-Based Organic Semiconductors. Advanced Materials, 23, 4347.
[26] Wang, C., Dong, H., Hu, W., Liu, Y. and Zhu, D. 2012. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews, 112, 2208.
[27] Xiang, XZ. 2009. Dissertation : Organic Thin Film Transistors and Solar Cells Fabricated with ?-Conjugated Polymers and Macrocyclic Materials. The University of Hong Kong.
[28] Youn, J., Chen, M.-C., Liang, Y.-j., Huang, H., Ortiz, R. P., Kim, C., Stern, C., Hu, T.-S., Chen, L.-H., Yan, J.-Y., Facchetti, A.and Marks, T. J. 2010. Novel Semiconductors Based on Functionalized Benzo[ d , d ′]thieno[3,2- b ;4,5- b ′]dithiophenes and the Effects of Thin Film Growth Conditions on Organic Field Effect Transistor Performance. Chemistry of Materials, 22, 5031.
[29] Youn, J., Huang, P.-Y., Huang, Y.-W., Chen, M.-C., Lin, Y.-J., Huang, H., Ortiz, R. P., Stern, C., Chung, M.-C., Feng, C.-Y., Chen, L.-H., Facchetti, A.and Marks, T. J. 2012. Versatile α,ω-Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thin-Film Transistors. Advanced Functional Materials, 22, 48.
[30] Zhang, L., Tan, L., Wang, Z., Hu, W.and Zhu, D. 2009. High-Performance, Stable Organic Field-Effect Transistors Based on trans -1,2-(Dithieno[2,3- b :3′,2′- d ]thiophene)ethene. Chemistry of Materials, 21, 1993.
[31] Zhu, Wen-Wei. 2003. Dissertation : Organic Thin Film Transistors. Department of Electrical and Computer Engineering. McGill University, Montreal.
指導教授 陳銘洲(Chen-Ming Chou) 審核日期 2012-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明