博碩士論文 992204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.236.122.9
姓名 林庭瑄(Ting-Syuan Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
(Signaling mechanism of green tea (-)-epigallocatechin gallate inhibits the effects of endothelin-1 on 3T3-L1 adipocyte glucose uptake.)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病
★ 內皮素誘導前脂肪細胞生長的訊息路徑★ 綠茶對前脂肪細胞生長的影響
★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響★ 綠茶唲茶素對於前脂肪細胞分化的影響
★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長
★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響
★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色★ 賜諾殺穩定性及東方果實蠅費洛蒙之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討綠茶唲茶素中表沒食子酸酯型唲茶素酸酯(簡寫為EGCG)調控第一型內皮素(簡寫為ET-1 )在短時間(0.5小時)、中長時間(2小時)、長時間(6小時)刺激脂肪細胞攝入葡萄糖的訊息機制。利用3T3-L1脂肪細胞,實驗中發現,在ET-1處理0.5小時和2小時的環境下,預先處理PI3K的抑制劑LY294002及wortmannin時,EGCG無法抑制由ET-1所誘導的葡萄糖攝取作用,然而在前處理ERK/MAPK的抑制劑PD98059及U0126的組別中則無此效應,因此推測EGCG會使ET-1在短時間處理時所減弱葡萄糖攝取的作用與PI3K/AKT此訊息路徑相關。另一方面也發現,當脂肪細胞在已有JAK2的抑制劑AG490(50 µM )的環境下,ET-1處理0.5小時、2小時的組別中會發現葡萄糖攝取有增加的趨勢,因此可推論EGCG的作用會與JAK2/STAT-3訊息相關。在脂肪細胞裡鑑定到一個EGCG接受子[已知為67-kDa laminin接受子 (67LR)]。在本研究中,預先處理67 LR 抗體時無論是在處理0.5、2、6小時ET-1的環境下,皆呈現EGCG無法抑制ET-1促進葡萄糖攝取的現象,因此推論EGCG會透過67LR來抑制由ET-1所誘導的葡萄糖攝取。另外本實驗中發現在ET-1處理0.5小時的環境下,預先處理抗氧化劑NAC時脂肪細胞本身及由ET-1所誘導的葡萄糖攝取的能力皆有增加的趨勢,因而推測NAC在短時間影響脂肪細胞本身及ET-1所促進的葡萄糖攝取作用與ROS的生成相關。而在預先處理AMPK抑制劑compound C的組別中,無論是在處理0.5、2、6小時ET-1的環境下,皆呈現EGCG無法抑制ET-1促進葡萄糖攝取的現象,因此推論EGCG會透過AMPK來抑制由ET-1所誘導的葡萄糖攝取現象。而當ET-1處理2小時和6小時,EGCG會藉由AMPK的路徑去減弱ET-1所促使的GLUT-1蛋白表現,進而減少葡萄糖攝取的作用。
摘要(英) This study investigated the possible mechanism involved in EGCG modulation of ET-1-stimulated glucose uptake in 3T3-L1 adipocytes. We found that pretreatment with the PI3K inhibitors, such as LY294002 and wortmannin, inhibited EGCG-induced decreases on the acutely ET-1 stimulated glucose uptake in adipocytes. However, none of the ERK/MAPK inhibitors, such as PD98059 and U0126, significantly blocked the anti-ET-1 effects of EGCG on adipocyte glucose uptake. These data suggest that PI3K activation is necessary for the effects of EGCG on the acutely ET-1-stimulated glucose uptake in adipocytes. Interestingly, we observed that pretreatment with the JAK2/STAT3 inhibitors, such as AG490(50 µM ), increased the basal glucose uptake and the ET-1-dependent glucose uptake, suggesting the JAK2/STAT3-dependent effect of EGCG. The EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] was identified in fat cells. Pretreatment of adipocytes with 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on ET-1-induced glucose uptake in adipocytes. These data suggest that EGCG exerts its anti-ET-1 actions on adipocyte glucose uptake via the 67LR. However, NAC(an antioxidant) acutely increased the basal glucose uptake and ET-1 stimulated glucose uptake, indicating that NAC possibly affected glucose uptake by suppressing not only the ET-1-dependent ROS production but also the ET-1-independent ROS production. Pretreatment with the AMPK inhibitor, such as compound C, blocked the anti-ET-1 effects of EGCG on adipocyte glucose uptake, and prevented the effects of EGCG on the chronically ET-1-stimulated GLUT-1 protein expression. This suggests that EGCG inhibits the chronically ET-1 action on adipocyte glucose uptake through the activation of AMPK pathway that results in alterations of GLUT-1 protein expression. Results of this study may help understand the mechanism of how green tea EGCG modulates hormone-mediated obesity.
關鍵字(中) ★ 綠茶表沒食子酸酯型唲茶素酸酯
★ 第一型内皮素
★ 葡萄糖攝取
★ 葡萄糖運送蛋白
★ 訊息機制
關鍵字(英) ★ EGCG
★ ET-1
★ glucose uptake
★ glucose transporter
★ signaling mechanism
論文目次 英文摘要....................................................i
中文摘要...................................................ii
誌謝.....................................................iii
目錄......................................................iv
縮寫與全名對照.............................................vii
一.前言.....................................................1
1.第一型內皮素...............................................1
2.綠茶表沒食子酸酯型兒茶素酸酯..................................4
3.葡萄糖運送蛋白.............................................6
4.第一型內皮素與綠茶兒茶素的關聯................................8
5.研究動機與目的.............................................9
二.實驗材料與方法............................................10
1.實驗材料.................................................10
2.細胞培養.................................................10
3.細胞處理.................................................11
4.葡萄糖攝取試驗............................................12
5.西方點墨法...............................................13
6.統計分析.................................................15
三.結果....................................................16
3.1 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效不受MAPK的抑制物所影響.....................................................16
3.2 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效應會被PI3K的抑制物所抑制...................................................16
3.3 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效應會受高濃度的JAK2抑制物所調控............................................17
3.4 唲茶素中EGCG會藉由67LR抑制第一型內皮素所誘導的葡萄糖攝取.......17
3.5 NAC會影響唲茶素中EGCG和第一型內皮素對於3T3-L1脂肪細胞葡萄糖攝取的調節.....................................................18
3.6 唲茶素中EGCG會藉由AMPK抑制第一型內皮素所誘導的葡萄糖攝取.......18
3.7 唲茶素抑制第一型內皮素所誘導的GLUT-1蛋白增加此效應會被compound C所調控,而GLUT-4蛋白則不受影響................................19
3.8唲茶素抑制第一型內皮素所誘導的葡萄糖攝取呈現唲茶素專一效應.......19
3.9唲茶素抑制第一型類胰島素分子以及第二型類胰島素分子所誘導的葡萄糖攝取呈現唲茶素專一效應............................................20
四.討論...................................................21
4.1 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效應不受MAPK的抑制物所影響...................................................21
4.2 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效應會被PI3K的抑制物所抑制...................................................22
4.3 唲茶素中EGCG抑制第一型內皮素所誘導的葡萄糖攝取此效應會受高濃度的JAK2抑制物所調.............................................23
4.4 唲茶素中EGCG會藉由67LR抑制由第一型內皮素所誘導的葡萄糖攝取.....23
4.5 NAC會影響唲茶素中EGCG 和第一型內皮素對於3T3-L1脂肪細胞葡萄糖攝取的調節.....................................................24
4.6 唲茶素中EGCG會藉由AMPK抑制第一型內皮素所誘導的葡萄糖攝取.......24
4.7 唲茶素抑制第一型內皮素所誘導的GLUT-1蛋白增加此效應會被compound C所調控,而GLUT-4蛋白則不受影響................................25
4.8 唲茶素抑制第一型內皮素、第一型類胰島素分子及第二型類胰島素分子所誘導的葡萄糖攝取皆呈現唲茶素專一效應................................25
五.結論....................................................27
六.參考文獻................................................28
七.表目錄..................................................35
八.圖目錄..................................................39
九.附錄....................................................52
參考文獻 六、參考文獻
1. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T 1988 A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411-415.
2. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T 1989 The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 86:2863-2867.
3. Kozuka M, Ito T, Hirose S, Lodhi KM, Hagiwara H 1991 Purification and characterization of bovine lung endothelin receptor. J. Biol. Chem. 266:16892-16896.
4. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S 1990 Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730-732.
5. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T 1990 Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732-735.
6. Xion Y, Tanaka H, Richardson JA, Williams SC, Slaughter CA, Nakamura M, Chen JL, Yanagisawa M 2001 Endothelin-1 stimulates leptin production in adipocyte. J. Biol. Chem. 276:28471-28477.
7. Idris I, Patiag D, Gray S, Donnelly R 2001 Tissue- and time-dependent effects of endothelin-1 on insulin-stimulated glucose uptake. Biochem. Pharmacol. 62:1705-1708.
8. Kedzierski RM, Yanagisawa M 2001 Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41:851-876.
9. Kawanabe Y and Nauli SM 2011 Endothelin. Cell Mol. Life Sci. 68: 195–203.
10. Khimji AK, Rockey DC 2010 Endothelin-biology and disease. Cellular Signalling 22:1615-1625.
11. Bhattacharya I, Ullrich A 2006 Endothelin-1 inhibits adipogenesis: Role of phohphorylation of Akt and ERK 1/2. FEBS Lett. 580:5765-5771.
12. Juan CC, Chang CL, Lai YH, Ho LT 2005 Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 288:E1146-E1152.
13. Ishibashi K-I, Imamura T, Sharma PM, Ugi S, Olefsky JM 2000 The acute and chronic stimulatory effects of endothelin-1 on glucose transport are mediated by distinct pathways in 3T3-L1 adipocyte. Endocrinology 141:4623-4628.
14. Wu-Wong JR, Berg CE, Wang J, Chiou WJ, Fissel B 1998 Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocyte. J. Biol. Chem. 274:8103-8110.
15. Imamura T, Ishibashi K-I, Dalle S, Ugi S, Olefsky JM 1999 Endothelin-1-induced GLUT4 translocation is mediated via Gαq/11 protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocyte. J. Biol. Chem. 274:33691-33695.
16. Kao YS, Fong JC 2008 Endothelin-1 induces glut1 transcription through enhanced interaction between Sp1 and NF-κB transcription factors. Cellular Signalling 20:771-778.
17. Fong JC, Kao YS, Tsai HY, Ho LT 2001 Endothelin-1 increases glucose transporter glut1 mRNA accumulation in 3T3-L1 adipocytes by a mitogen-activated protein kinase-dependent pathway. Cellular Signalling 13:491-497.
18. Kao YS, Fong JC 2008 Endothelin-1 induction of Glut1 transcription in 3T3-L1 adipocytes involves distinct PKCε- and p42/p44 MAPK-dependent pathways. Biochim. Biophys. Acta. 1780:154-159.
19. Lee YC, Juan CC, Fang VS, Hsu YP, Lin SH, Kwok CF, Ho LT 1998 Evidence that endothelin-1 (ET-1) inhibits insulin-stimulated glucose uptake in rat adipocytes mainly through ETA receptors. Metabolism 47:1468-1471.
20. McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR 2007 Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 292:L278-L286.
21. Sud N, Black SM 2009 Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cδ-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol. 28:543-553.
22. RUSZNYÁK ST, SZENT-GYÖRGYI A 1936 Vitamin P: Flavonols as Vitamins. Nature 138, 27-27.
23. Thielecke F, Boschmann M 2009 The potential role of green tea catechins in the prevention of the metabolic syndrome – A review. Phytochemistry 70:11–24.
24. Sabu MC, Smitha K, Kuttan R 2002 Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83:109-116.
25. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H 1999 Green tea and cancer chemoprevention. Mutation Research 428:339-344.
26. Morre DJ, Bridge A, Wu LY, Morre DM 2000 Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem. Pharmacol. 60:937-946.
27. Uchida S, Ozaki M, Suzuki K, Shikita M 1992 Radioprotective effects of (-)-epigallocatechin 3-O-gallate (green-tea tannin) in mice. Life Sciences 50:147-152.
28. Kao YH, Hiipakka RA, Liao S 2000 Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980-987.
29. Ku HC, Liu HS, Hung PF, Chen CL, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH 2012 Green tea (-)-epigallocatechin gallate inhibits IGF-1 and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol. Nutr. Food Res. 56:1-15.
30. Kao YH, Chang HH, Lee MJ, Chen CL 2006 Tea, obesity, and diabetes. Mol. Nutr. Food Res. 50:188-210.
31. Wolfram S 2007 Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 26:373S-388S
32. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK 2002 Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J. Biol. Chem. 277:34933-34940.
33. Hsieh CF, Tsuei YW, Liu CW, Kao CC, Shih LJ, Ho LT, Wu LY, Wu CP, Tsai PH, Chang HH, Ku HC, Kao YH 2010 Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Medica 76:1-5.
34. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH 2009 Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am. J. Physiol. Cell Physiol. 297:C121–C132.
35. Tachibana1 H, Koga1 K, Fujimura1 Y, Yamada1 K 2004 A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 11:380-381.
36. Mecham RP 1991 Receptors for laminin on mammalian cells. FASEB J. 5:2538-2546.
37. Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH 2009 The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol. Nutr. Food Res. 5:349-360.
38. Daval M, Foufelle F, Ferré1 P 2006 Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 574: 55–62.
39. Murase T, Misawa K, Haramizu S, Hase T 2009 Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem. Pharmacol. 78:78-84.
40. Salt IP, Connell JM, Gould GW 2000 5-aminoimidazole- 4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649-1656.
41. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS 2007 Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 15:2571-2582.
42. Jung KH, Choi HS, Kim DH, Han MY, Chang UJ, Yim SV, Song BC, Kim CH, Kang SA 2008 Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J. Med. Food. 11:429-434.
43. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH 2005 Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am. J. Physiol.Cell Physiol. 288:C1094-1108.
44. Liu HS, Chen YH, Hung PF, Kao YH 2006 Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am. J. Physiol. Endocrinol. Metab. 290:E273-E281
45. Ueda M, Furuyashiki T, Yamada K, Aoki Y, Sakane I, Fukuda I, Yoshida K-I, Ashida H 2010 Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct. 1:167-173
46. Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto K-I 2008 Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol. Pharm. Bull. 31:1403-1409
47. Spinella F, Rosano L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A 2006 Green tea polyphenol epigallocatechin- 3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol. Cancer Ther. 5:1483-1492
48. Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O 2007 (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: Inhibition of p44/p42 MAP kinase activation. FEBS Lett. 581:1311-1316
49. Reiter CE, Kim JA, Quon MJ 2010 Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology 151:103-114.
50. Augustin R 2010 The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 62: 315–333
51. Thorens B, Mueckler M 2010 Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab. 298: E141–E145
52. LeFEVRE PG 1948 Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J. Gen. Physiol. 31:505-527.
53. Kasahara M, Hinkle PC 1977 Reconstitution and purification of the D-glucose transporter from human erythrocytes. Biol. Chem. 252:7384-7390
54. Huang S, Czech MP 2007 The GLUT4 glucose transporter. Cell Metab. 5:237-252.
55. Hosoda K, Nakao K, Hiroshi-Arai, Suga S, Ogawa Y, Mukoyama M, Shirakami G, Saito Y, Nakanishi S, Imura H 1991 Cloning and expression of human endothelin-1 receptor cDNA. FEBS Lett. 287:23-26.
56. Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM 2001 Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J. Clin. Invest. 107:1193-1202.
57. Chien Y, Lai YH, Kwok CF, Ho LT 2011 Endothelin-1 suppresses long-chain fatty acid uptake and glucose uptake via distinct mechanisms in 3T3-L1 adipocytes. Obesity 19:6-12.
58. Olson AL, Pessin JE 1996 Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu. Rev. Nutr. 16:235-256.
59. Shepherd PR, Gibbs EM, Wesslau C, Gould GW, Kahn BB 1992 Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation Diabetes 41:1360-1365.
60. Du L, Heaney AP 2012 Regulation of adipose differentiation by fructose and GluT5. Mol. Endocrinol. 26:1773-1782.
61. Scheepers A, Doege H, Joost HG, Schürmann A 2001 Mouse GLUT8: genomic organization and regulation of expression in 3T3-L1 adipocytes by glucose. Biochem. Biophys. Res. Commun. 288:969-974.
62. Wood IS, Hunter L, Trayhurn P 2003 Expression of Class III facilitative glucose transporter genes (GLUT-10 and GLUT-12) in mouse and human adipose tissues. Biochem. Biophys. Res. Commun. 308:43-49.
63. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B 2001 Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J. 20:4467-4477.
64. Song HJ, Kim JS, Lee MJ, Nam YS, Sohn UD 2007 Reactive oxygen species mediate ET-1-induced activation of ERK1/2 signaling in cultured feline esophageal smooth muscle cells. Arch. Pharm. Res. 30(9):1080-1087.
65. Fukuoka H, Iida K, Nishizawa H, Imanaka M, Takeno R, Iguchi G, Takahashi M, Okimura Y, Kaji H, Chihara K, Takahashi Y 2010 IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes. Growth Horm. IGF Res. 20(3):212-219.
66. Ha H, Lee HB 2000 Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int. Suppl. 77:19-25.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2013-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明