博碩士論文 992204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.144.41.157
姓名 林思婷(Szu-ting Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 建構藍綠菌的脂質分泌系統
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近年石油需求量增加及開採枯竭的預期心理,造成能源物質價格不斷的上揚,加上傳統石化燃料會造成環境汙染嚴重,所引發議題引人關注。因此不斷的尋求可替代之能源,例如可再生的生物燃料,目前較注重利用微藻類的基因工程技術,尤其是單細胞原核藻類的開發,因比起其他多細胞藻類,實驗操作較單純容易,且與植物一樣能利用太陽能和將二氧化碳轉化成燃料,一方面可減少空氣中二氧化碳,另一方面,它們的生長不需要廣大的耕地等等優點,使得微藻的生質能源研究備受重視。但因目前生產的製程必須打破微藻才可從中提取細胞內脂質,不可避免地消耗大量的能源以及增加生產生質柴油的成本時間。所以我們想要跳過此耗時費能的破菌步驟,直接得到油脂,減少成本消耗。我們選擇了藍綠菌Synechocystis sp. PCC 6803作為模式生物,嘗試尋找如何在生物燃料生產中使用容易回收脂質的方法。我們的策略是建構一個有效的的脂肪酸分泌平台,在Synechocystis sp. PCC 6803。表現脂肪酸的載體蛋白,通道蛋白或轉運蛋白,促使脂肪酸被運送至細胞外,如此一來,即可以藉由培養液的萃取直接得到油脂。其不僅可以降低生物柴油的成本跳過破菌的過程,而且也有助於一貫作業式的生物製程的發展。因此,此實驗設計的重點在於分泌脂肪酸,而不是增加微藻細胞內脂質含量,以此達到細胞能不斷繼代培養及可連續由細胞外獲得原料,從而建立一個並行的生產生質柴油的製程。結果發現只有轉型Arabidopsis thaliana Temperature-induced-lipocalin (AtTIL) 及 Synechocystis sp. PCC 6803 Lipid-transfer proteins (SpLTP)的轉型株具有較明顯的脂質分泌現象。
摘要(英) Concerns about petroleum supplies, high energy cost, and environmental pollutions are driving scientists to find renewable biofuels such as bioethanol, biodiesel, and biogas. Recently, more attention has been focused on the application of genetically engineered algae in the massive production of biodiesels. Photosynthetic microorganisms, such as microalgae and cyanobacteria, are excellent organisms for biofuel production. Their genomes are relatively small and therefore are easy to manipulate. They are efficient at converting solar energy and recycling CO2 into fuels. In particular, unlike many energy crops, they can be grown on non-arable land. One down side in using microalgae as bioenergy resources is that, an energy-consuming step is required to break down the cell wall of microalgae to extract the intracellular lipids, which would inevitably increase the cost and time of producing biodiesel. We have selected Cyanobacterium Synechocystis sp. PCC 6803 as a model organism to develop methods for easy recovery of lipids for biofuel production. Our strategy is to construct an efficient fatty acid secretion system using the cyanobacterium Synechocystis sp. PCC6803 as the platform. The targets of interest include fatty acid carrier proteins, channel proteins or transporters The secreted fatty acids can then be filtered or absorbed by filters. This strategy can not only reduce the time and cost of making biodiesel by skipping the breaking-down step, but also aid in the development of a consolidated bioprocess. Hence, this project does not aim to increase the intracellular lipid content of the microalgae, but instead to facilitate the secretion of fatty acids to the medium and consequently to establish a consolidated bioprocess for biodiesel production. FFA secretion was observed and determined by GC, our data have shown that introducing extra Arabidopsis thaliana Temperature-induced-lipocalin (AtTIL) and Synechocystis sp. PCC 6803 Lipid-transfer proteins (SpLTP) into Synechocystis sp. PCC 6803 have more secretion efficiency.
關鍵字(中) ★ 生質柴油
★ 藍綠菌
★ 光合作用
★ 脂質分泌
關鍵字(英)
論文目次 目 錄
中文摘要 iv
ABSTRACT v
誌 謝 vii
目 錄 viii
圖 目 錄 xi
表 目 錄 xii
縮寫檢索表 xiii
第一章 緒論 - 1 -
1.1 生質能源的簡介 - 1 -
1.1.1生質能源的意義 - 1 -
1.1.2生質能源的發展 - 1 -
1.2 生質柴油的介紹 - 2 -
1.2.1生質柴油的介紹 - 2 -
1.2.2藻類生質柴油 - 3 -
1.2.3藻類中萃取油脂 - 4 -
1.3 脂肪酸傳輸及相關蛋白 - 6 -
1.3.1 acyl-ACP thioesterase - 6 -
1.3.2 ATP-binding cassette transporters - 7 -
1.3.3 Lipid-transfer protein - 7 -
1.3.4 Lipocalin - 8 -
1.4 藍綠菌Synechocystis sp. PCC 6803 的簡介 - 8 -
1.5 研究目的 - 11 -
第二章 材料與方法 - 13 -
2.1 菌株、載體及培養基 - 13 -
2.2 大腸桿菌勝任細胞的製備與轉型作用 - 15 -
2.2.1大腸桿菌勝任細胞的製備 - 15 -
2.2.2大腸桿菌勝任細胞的轉型作用 (transformation) - 16 -
2.3 藍綠菌的轉型作用 - 17 -
2.3.1藍綠菌的轉型作用過程 - 17 -
2.4 質體之選殖 - 17 -
2.5 蛋白質製備 - 18 -
2.5.1在大腸桿菌中表現脂質分泌相關蛋白 - 18 -
2.5.1藍綠菌中表現脂質分泌相關蛋白 - 19 -
2.6 SDS-PAGE之蛋白質分子量分析 - 20 -
2.7 西方點墨法 - 20 -
2.8 油脂分析及脂質含量測定 - 21 -
2.8.1菌體及培養基粉末製作(冷凍乾燥法) - 21 -
2.8.2總脂肪含量測定(甲醇氯仿萃取法) - 22 -
2.8.3氣相層析儀分析含量及成分 - 23 -
第三章 結果 - 25 -
3.1 藍綠菌Synechocystis sp. PCC 6803轉型 - 25 -
3.2在大腸桿菌表現蛋白 - 26 -
3.3 藍綠菌轉型確定 - 28 -
3.4 在藍綠菌內啟動子效率比較 - 29 -
3.5 在大腸桿菌啟動子效率比較 - 30 -
3.6 大腸桿菌轉型株的脂質含量 - 31 -
3.7 藍綠菌轉型株中總脂質含量。 - 32 -
3.8 藍綠菌轉型株中脂質組成的改變 - 33 -
第四章 討論 - 37 -
4.1 生質柴油原料的選擇 - 37 -
4.2 在大腸桿菌和藍綠菌中啟動子的選擇 - 38 -
4.3 大腸桿菌中油脂的分泌 - 38 -
4.4 藻類油脂的分泌 - 39 -
參考文獻 - 41 -
圖表 - 44 -
附錄 - 59 -
圖 目 錄
圖 一、生質柴油原料 - 44 -
圖 二、藍綠菌中能源轉換 - 45 -
圖 三、將脂質運送至細胞外的模式 - 46 -
圖 四、以不同抗生素篩選藍綠菌轉型株 - 47 -
圖 五、在大腸桿菌中表現脂質運輸相關蛋白 - 48 -
圖 六、以西方點墨法偵測脂質運輸相關蛋白在藍綠菌中的表現 - 49 -
圖 七、PCR染色體DNA確定藍綠菌轉型菌株 - 50 -
圖 八、PCR cDNA確定藍綠菌轉型菌株 - 51 -
圖 九、比較不同啟動子在藍綠菌中的效率 - 52 -
圖 十、比較不同啟動子在大腸桿菌中的效率 - 53 -
圖 十一、比較現在用於Synechocystis sp. PCC6308得到的Biomass中FAME所占的比例 (Sheng et al, 2011) - 54 -
參考文獻 Andrews J, Keegstra K (1983) Acyl-CoA Synthetase Is Located in the Outer Membrane and Acyl-CoA Thioesterase in the Inner Membrane of Pea Chloroplast Envelopes. Plant Physiol 72: 735-740
Bagdasarian MM, Amann E, Lurz R, Ruckert B, Bagdasarian M (1983) Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26: 273-282
Borst P, Zelcer N, van Helvoort A (2000) ABC transporters in lipid transport. Biochim Biophys Acta 1486: 128-144
Carriquiry MA, Du XD, Timilsina GR (2011) Second generation biofuels: Economics and policies. Energ Policy 39: 4222-4234
Charron JB, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139: 2017-2028
Chi WT, Fung RW, Liu HC, Hsu CC, Charng YY (2009) Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ 32: 917-927
Cho H, Cronan JE, Jr. (1995) Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 270: 4216-4219
Davis MS, Solbiati J, Cronan JE, Jr. (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275: 28593-28598
Fairley P (2011) Next generation biofuels. Nature 474: S2-S5
Hernandez-Prieto MA, Futschik ME (2012) CyanoEXpress: A web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803. Bioinformation 8: 634-638
Imamura S, Asayama M (2009) Sigma factors for cyanobacterial transcription. Gene Regul Syst Bio 3: 65-87
Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7: 359-371
Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Phys 47: 627-654
Kufryk GI, Sachet M, Schmetterer G, Vermaas WF (2002) Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett 206: 215-219
Liu X, Curtiss R, 3rd (2009) Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 106: 21550-2155
Liu X, Sheng J, Curtiss R, 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108: 6899-6904
Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99: 4717-4722
Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44: 5353-5363
Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28: 742-746
Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491-515
Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37: 52-68
Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91: 471-490
Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100: 203-212
Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162: 134-147
Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12: 274-281
Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403: 25-34
Sharma KK, Schuhmann H, Schenk PM (2012) High Lipid Induction in Microalgae for Biodiesel Production. Energies 5: 1532-1553
Sheng J, Vannela R, Rittmann BE (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102: 1697-1703
Shibato J, Asayama M, Shirai M (1998) Specific recognition of the cyanobacterial psbA promoter by RNA polymerases containing principal sigma factors. Biochim Biophys Acta 1442: 296-303
Stamm P, Verma V, Ramamoorthy R, Kumar PP (2012) Manipulation of plant architecture to enhance lignocellulosic biomass. AoB Plants 2012: pls026
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559-562
Tahara H, Uchiyama J, Yoshihara T, Matsumoto K, Ohta H (2012) Role of Slr1045 in environmental stress tolerance and lipid transport in the cyanobacterium Synechocystis sp. PCC6803. Biochim Biophys Acta 1817: 1360-1366
Zang X, Liu B, Liu S, Arunakumara KK, Zhang X (2007) Optimum conditions for transformation of Synechocystis sp. PCC 6803. J Microbiol 45: 241-245
郭家誠 (2010) 建構生質柴油的研發平台。 中央大學碩士論文
蘇純平 (2010) 微藻類之生質能源開發。 中原大學碩士論文
指導教授 王健家(Chien-chia Wang) 審核日期 2013-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明