博碩士論文 992204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.161.31.247
姓名 黃浩宇(Hao-Yu Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥突變株hit2/xpo1a的強光敏感性狀是部份源自於AtHsfA4a累積在細胞核
(The high light sensitive phenotype of Arabidopsis hit2/xpo1a mutant is caused in part by confining AtHsfA4a in nucleus)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 阿拉伯芥蛋白激酶AtYak1之功能探討★ 阿拉伯芥HIT1基因定序及選殖
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在阿拉伯芥中,EXPORTIN1A (HIT2/XPO1A)和EXPORTIN1B (XPO1B)負責把帶有NES的蛋白質從細胞核運送到細胞質。然而,HIT2/XPO1A突變而非XPO1B突變會引發強光敏感。由於阿拉伯芥熱逆境因子A4a和A5 (AtHsfA4a and AtHsfA5)參予在強光逆境反應中並且帶有NES,因此我們分析其細胞核質分布。在野生型和xpo1b細胞,AtHsfA4a常態分佈在細胞質但是隨著強光處裡卻變成在細胞核,而AtHsfA5則持續分布在細胞質和細胞核。然而在hit2/xpo1a細胞,不管有無強光處裡,AtHsfA4a和AtHsfA5都會分布在細胞核。雖然AtHsfA4a可以強化植物清除H2O2的能力,並且AtHsfA5是AtHsfA4a的repressor,但是athsfa5突變株而非athsfa4a突變株會對強光敏感。此外,表現AtHsfA4a∆NES的athsfa4a突變株是對於強光敏感,但是表現AtHsfA5∆NES的athsfa5突變株是對於強光不敏感。同時,hit2/athsfa4a雙重突變株比起hit2是較耐受強光逆境。這些結果顯示,AtHsfA4a和AtHsfA5都是HIT2/XPO1A的專一受質。AtHsfA4a長期的累積會造成hit2的強光敏感性狀,並且這是獨立於其清除H2O2的能力,AtHsfA5的存在則可以減輕這不利的影響。雖然AtHsfA4a的細胞核質分布也受熱處理改變,但是持續性高溫逆境和熱休克逆境分析顯示,AtHsfA4a和AtHsfA5的調控機制不參與在hit2的熱敏感性狀中。
摘要(英) In Arabidopsis, EXPORTIN1A (HIT2/XPO1A) and EXPORTIN1B (XPO1B) mediate the translocation of nuclear export sequence (NES)-bearing proteins from nucleus to cytoplasm. However, a mutation in HIT2/XPO1A but not in XPO1B induces sensitivity to high light (HL). Arabidopsis thaliana heat stress factors A4a and A5 (AtHsfA4a and AtHsfA5) are involved in plant responses to HL and possess NESs; therefore, their nucleo-cytoplasmic partitioning was analyzed. In wild-type and xpo1b mutant cells, AtHsfA4a normally remained in the cytoplasm but became concentrated in the nucleus following exposure to HL, whereas AtHsfA5 was constitutively distributed in both cytoplasm and nucleus. However, in hit2/xpo1a mutant, AtHsfA4a and AtHsfA5 were always confined to the nucleus, regardless of the irradiance. Although AtHsfA4a can enhance the ability of plants to scavenge H2O2, and AtHsfA5 is a repressor of AtHsfA4a, athsfa5 but not athsfa4a mutant plants exhibited HL sensitivity. Additionally, athsfa4a plants expressing AtHsfA4a∆NES were sensitive to HL, but athsfa5 plants expressing AtHsfA5∆NES were not. Meanwhile, hit2/athsfa4a double mutant was more tolerant to HL than hit2. These results indicate that both AtHsfA4a and AtHsfA5 were HIT2/XPO1A-specific substrates. Long-term accumulation of AtHsfA4a contributed to the hit2 HL-sensitive phenotype independent of the scavenging ability of H2O2, and the presence of AtHsfA5 could mitigate this adverse effect. Although nucleo-cytoplasmic distribution of AtHsfA4a was heat-mediated changed, analysis of sustained heat stress and heat shock showed that the regulation of AtHsfA4a and AtHsfA5 is independent of heat-sensitive phenotype of hit2.
關鍵字(中) ★ 強光逆境
★ 熱逆境
關鍵字(英)
論文目次 中文摘要...................................................................................................................i
Abstract.....................................................................................................................ii
致謝..........................................................................................................................iii
目錄..........................................................................................................................iv
圖表目錄...................................................................................................................v
一、緒論...................................................................................................................1
二、實驗材料與方法...............................................................................................5
1. 實驗材料..............................................................................................................5
2. 實驗方法..............................................................................................................9
三、實驗結果.........................................................................................................15
四、討論.................................................................................................................22
五、參考文獻.........................................................................................................26
六、附錄
1. 在不同逆境下AtHsfA4a基因表現模式..........................................................46
參考文獻 Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657.

Apel K, Hirt H (2004) REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology 55:373-399.

Baniwal SK, Chan KY, Scharf K-D, Nover L (2007) Role of Heat Stress Transcription Factor HsfA5 as Specific Repressor of HsfA4. Journal of Biological Chemistry 282:3605-3613.

Blanvillain R, Boavida LC, McCormick S, Ow DW (2008) EXPORTIN1 Genes Are Essential for Development and Function of the Gametophytes in Arabidopsis thaliana. Genetics 180:1493-1500.

Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16:735-743.

Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005a) Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis. The Plant Cell 17:268-281.

Davletova S, Schlauch K, Coutu J, Mittler R (2005b) The Zinc-Finger Protein Zat12 Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiology 139:847-856.

Haasen D, Köhler C, Neuhaus G, Merkle T (1999) Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. The Plant Journal 20:695-705.

Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L (2001) The Balance of Nuclear Import and Export Determines the Intracellular Distribution and Function of Tomato Heat Stress Transcription Factor HsfA2. Molecular and Cellular Biology 21:1759-1768.

Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica 46:1-10.

Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B (2012) GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Research 40:D1211-D1215.

Kotak S, Port M, Ganguli A, Bicker F, Von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant Journal 39:98-112.

Merkle T (2003) Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 44:231-260.

Merkle T (2011) Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports 30:153-176.

Miller GAD, Mittler RON (2006) Could Heat Shock Transcription Factors Function as Hydrogen Peroxide Sensors in Plants? Annals of Botany 98:279-288.

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15:473-497.

Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817:1127-1133.

Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777-8796.

Niyogi KK (1999) PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annual Review of Plant Physiology and Plant Molecular Biology 50:333-359.

Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones 6:177-189.

Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z, Medzihradszky K, Bögre L, Koncz C, Szabados L (2014) The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6. Plant Physiology 165:319-334.

Personat J-M, Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Jordano J (2014) Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biology 14:1-12.

Powles SB (1984) Photoinhibition of Photosynthesis Induced by Visible Light. Annual Review of Plant Physiology 35:15-44.

Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104-119.

Scharf K-D, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The Tomato Hsf System: HsfA2 Needs Interaction with HsfA1 for Efficient Nuclear Import and May Be Localized in Cytoplasmic Heat Stress Granules. Molecular and Cellular Biology 18:2240-2251.

Shim D, Hwang J-U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the Class A4 Heat Shock Transcription Factor HsfA4a Confer Cadmium Tolerance in Wheat and Rice. The Plant Cell 21:4031-4043.
Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16:53-60.

Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13:178-182.

Tejedor-Cano J, Carranco R, Personat J-M, Prieto-Dapena P, Almoguera C, Espinosa JM, Jordano J (2014) A Passive Repression Mechanism that Hinders Synergic Transcriptional Activation by Heat Shock Factors Involved in Sunflower Seed Longevity. Molecular Plant 7:256-259.

von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends in Plant Science 12:452-457.

Wang L-C, Tsai M-C, Chang K-Y, Fan Y-S, Yeh C-H, Wu S-J (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62:3609-3620.

Wang L-C, Wu J-R, Chang W-L, Yeh C-H, Ke Y-T, Lu C-A, Wu S-J (2013) Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Journal of Experimental Botany 64:1689-1701.

Wang L-C, Wu J-R, Hsu Y-J, Wu S-J (2015) Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress. New Phytologist 205:544-554.

Wu S-J, Wang L-C, Yeh C-H, Lu C-A, Wu S-J (2010) Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytologist 186:833-842.

Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America 99:7530-7535.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2017-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明