博碩士論文 992204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.147.66.178
姓名 張雁晴(Yen-ching Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度
(TDAG8 activation sensitizes TRPV1 by PKA- and PKCε-dependent pathways)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ 台灣海岸植物之內生真菌多樣性研究★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現
★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons
★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫
★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加★ 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在慢性發炎中,高濃度的氫離子在局部組織中累積(組織酸化)引起疼痛。疼痛的強度則與組織酸化的程度相關。組織酸化引起的疼痛主要是經由直接地激活傷害感覺性感覺神經元(nociceptive sensory neurons),或經由酸敏感的受體間接地調節。辣椒素受體(TRPV1)是一個酸敏感的離子通道,在發炎後的背根神經(dorsal root ganglion)節當中,TRPV1基因的表現量與功能增加因而參與發炎性疼痛的產生。近期的研究中發現,酸敏感的G蛋白偶合受體TDAG8,在發炎後的背根神經節中的基因表現量也增加;並且,活化後的TDAG8可以增強TRPV1的敏感度。 然而,活化的TDAG8是如何增強TRPV1的敏感度目前仍不清楚。因此,本篇論文主要目的為釐清(1)TDAG8增強TRPV1敏感度的機制與(2)在背根神經節當中,經由酸化或慢性發炎增強TRPV1敏感度的機制。
在本篇論文中,我證實經由酸活化後的TDAG8可經由PKA與PKCε兩種激脢增強TRPV1的敏感度。在TDAG8表現的細胞中,TDAG8可經活化Gs蛋白,逕而藉由PKA與PKCε增強TRPV1的敏感度。特別的是,在小於pH 6.0的酸刺激下,TDAG8亦可經由能受到PTX與U73122所抑制的訊息傳導路徑增強TRPV1的敏感度。在培養的背根神經節細胞中,特別是IB4-positive細胞,pH 6.8的酸化可以經由PKA增加TRPV1的敏感度,也確實可以引起PKA與PKCε的活化並且轉移到細胞膜上。進一步研究結果指出,CFA所引起長時間性發炎也可經由PKCε增強TRPV1敏感度。因此,依據不同的情況下,PKA與PKCε皆可增強辣椒素TRPV1的敏感度。
摘要(英) High local proton concentrations (tissue acidosis) found in some chronic inflammation complaints cause painfulness. The degree of associated pain is well correlated with magnitude of acidification. This is attributable to direct excitation of nociceptive sensory neurons or indirect modulation by proton-sensing receptors. Transient receptor potential vanilloid 1 (TRPV1), a proton-sensing ion channel, is involved in inflammatory pain because TRPV1 gene expression is increased and its function is enhanced in inflamed dorsal root ganglion (DRG) neurons. It is recently found that a proton-sensing G-protein-coupled receptors, TDAG8, has increased expression in inflamed DRG and its activation can enhance TRPV1 function. However, it remains unclear how TDAG8 activation sensitizes TRPV1 function. This thesis is to elucidate (1) the mechanism of TDAG8-mediated TRPV1 sensitization, and (2) the acidification- and chronic inflammation-induced TRPV1 sensitization in DRG neurons.
I have demonstrated that TDAG8 responds proton to sensitize TRPV1 through PKA- and PKCε-dependent pathways. In TDAG8-expressing cells, TDAG8 can activate Gs protein and then activate PKA or PKCε to sensitize TRPV1. Interestingly, at pH <6.0, TDAG8 can also sensitize TRPV1 through PTX- and U73122-sensitive pathways. In cultured DRG neurons, mild acidification (pH 6.8) induced TRPV1 sensitization through PKA-dependent pathways in IB4-positive neurons, although acidification induced PKA and PKCε translocation. Further studies revealed that CFA-induced long-term inflammation leading to TRPV1 sensitization through PKCε-dependent pathway. Accordingly, PKA and PKCε are involved in TRPV1 sensitization based on different situations.
關鍵字(中) ★ 辣椒素受體
★ T細胞死亡相關受體8
★ 蛋白質激脢A
★ 蛋白質激脢Cε
★ 發炎性疼痛
★ 組織酸化
關鍵字(英) ★ inflammatory pain
★ tissue acidosis
★ TDAG8
★ PKCε
★ TRPV1
★ PKA
論文目次 Contents
Abstract (English) i
Abstract (Chinese) ii
Acknowledgements iii
Contents iv
List of figures vii
List of tables ix
Abbreviations x
Chapter 1 Introduction 1
1.1 Pain 1
1.1.1 Nociception and nociceptors 1
1.1.2 Physiology of Aδ-fiber nociceptors 2
1.1.3 Physiology of C-fiber nociceptors 2
1.2 Inflammatory pain 3
1.2.1 Abnornal pain reseponses in inflammation 4
1.2.2 Inflammatory mediatros modulate nociceptors by PKA and PKCε 4
1.2.3 Tissue acidosis-linked pain 8
1.3 Proton receptors 8
1.3.1 Proton-gated ion channels 9
1.3.2 Proton-sensing G-protein-couple-receptors 11
1.4 The objective of the thesis 13
Chapter 2 Materials and Methods 14
2.1 Preparation of all solutions 14
2.2 Amplification and purification of plasmids 14
2.2.1 Transformation and bacteria cultures 14
2.2.2 Plasmid midi preparation 15
2.3 Measurement of intracellular cAMP 15
2.3.1 Cell treatment 16
2.3.2 Cell lysate collection 16
2.3.3 ELISA assay 17
2.4 Cell cultures and transfection 17
2.4.1 Subculture and sample preparation 17
2.4.2 Transfection 18
2.5 Measurement of intracellular calcium 18
2.5.1 Incubation of Fura-2 18
2.5.2 Single cell calcium imaging 18
2.6 Inflamed mice experiments 19
2.7 Primary DRG cultures 20
2.8 Immunohistochemistry and immunocytochemistry 21
2.8.1 Preparation of tissue section 21
2.8.2 Immunosatining 21
2.8.3 Fluorescence microscopy 22
2.8.4 Confocal microscopy 22
2.9 Statistical analysis 23
Chapter 3 Results 24
3.1 Accumulation of cAMP in TDAG8-exrpessing HEK293T cells 24
3.2 An increase of intracellular calcium levels by pH <6.0 extracellular acidification in TDAG8-expressing HEK293T cell 25
3.3 TDAG8-mediated calcium increase is through PTX- and U73122-sensitive pathway. 26
3.4 TRPV1 and ASIC1a are activated by pH <6.0 acidic stimulation. 26
3.5 TDAG8-mediated calcium increase is due to extracellular calcium influx through TRPV1 27
3.6 TDAG8 activation regulates TRPV1 function by PKA- and PKCε-dependent pathway at pH <6.0 28
3.7 TDAG8 activation sensitizes TRPV1 through PKA- and PKCε- dependent pathway at pH >6.0 29
3.8 Acidic stimulation sensitizes TRPV1 in IB4-positive neurons through a PKA- dependent pathway at pH >6.0 29
3.9 Acidic stimulation induces translocation of PKA and PKCε in DRG neurons 30
3.10 Small-to-medium diameter of DRG neurons express PKCε 31
3.11 CFA-induced inflammation cause paw edema and enhance capsaicin response 32
Chapter 4 Discussion 34
4.1 TDAG8 activation by proton 34
4.2 TDAG8 activation sensitizes TRPV1 36
4.3 Acidification-induced TRPV1 sensitization in DRG neurons 38
4.4 PKCε contributes to TRPV1 sensitization in CFA-induced long-term inflammation 39
Chapter 5 References 41
Appendix 77
List of figures
Figure 3-1 Changes of intracellular cAMP levels at different pH value in TDAG8-expressing HEK293T cells. 45
Figure 3-2 Changes of intracellular cAMP levels in TDAG8-expressing and G-protein-expressing HEK293T cells. 47
Figure 3-3 An increase of intracellular calcium levels in TDAG8-expressing cells exposed to pH <6.0 acidic buffers. 49
Figure 3-4 TDAG8-mediated calcium increase is through PTX- and U73122- sensitive pathway. 51
Figure 3-5 TRPV1 and ASIC1a were activated by pH <6.0 acidic stimulation. 52
Figure 3-6 TDAG8-mediated calcium increase is due to extracellular calcium influx through TRPV1 at pH <6.0. 54
Figure 3-7 TDAG8 activation regulates TRPV1 function by PKA- and PKCε- dependent pathway at pH <6.0. 56
Figure 3-8 TDAG8 activation sensitizes TRPV1 through a PKA- and PKCε- dependent pathway at pH >6.0. 58
Figure 3-9 Acidic stimulation induce TRPV1 sensitization through a PKA- dependent pathway at pH >6.0. 59
Figure 3-10 Acidic pH-stimulation induces redistribution of subcellular PKA in DRG neurons. 61
Figure 3-11 Acidic pH-stimulation induces redistribution of subcellular PKCε in DRG neurons. 63
Figure 3-12 Distribution of PKCε and non-peptidergic neurons in DRG tissue. 65
Figure 3-13 Distribution of PKCε in DRG tissue. 67
Figure 3-14 Paw thickness of mice was increased after CFA-injection 60 minutes and 25 hours. 69
Figure 3-15 Capsaicin response is not significant changed in acute inflamed DRG neurons.
70
Figure 3-16 KIE1-1 suppresses CFA-enhanced response to capsaicin in sub-acute -phase inflamed DRG neurons. 71
參考文獻 Aley KO, Messing RO, Mochly-Rosen D, Levine JD. (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci. 20(12):4680-5.
Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N and Bunnett NW. (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol. 575(Pt 2):555-71.
Basbaum AI, Bautista DM, Scherrer G and Julius D. (2009) Cellular and molecular machnanism of pain. Cell 139, pp267-281
Basbaum AI and Bushnell MC. (2008) Science of pain. 1st Edition Academic Pr
Bevan S, Yeats J. (1991) Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol. 433:145-61.
Breese NM, George AC, Pauers LE, Stucky CL. (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115: 37–49
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI and Julius D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, pp. 306-313.
Chen CC, England S, Akopian AN, and Wood JN. (1998) A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 95, pp. 10240-10245.
Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ and Zimmer A. (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, pp. 8992-8997.
Chen YJ, Hunag CW, Lin CS, Chang WH and Sun WH.(2009) Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Molecular pain 5:39
Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV & Julius D. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5),P2-mediated inhibition. Nature 411, 957–962.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD & Julius D. (1997) The capsaicin eceptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824.
Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A & Sheardown SA. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187.
Dina OA, Khasar SG, Gear RW and Levine JD. (2009) Activation of Gi induces mechanical hyperalgesia poststress or inflammation. Neuroscience 160: 501–507
Dirajlal S, Pauers LE and Stucky CL. (2003) Differential response properties of IB4-positive and -negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 89: 513–524
Gomtsyan A and Faltynek CR. (2010) Vanilloid Receptor TRPV1 in Drug Discovery: Targeting Pain and Other pathological disorders. WILEY.
Huang C.W. Tzeng JN, Chen YJ, Tsai WF, Chen CC and Sun WH. (2007) Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci. 36(2):195-210.
Hucho TB, Dina OA, Levine JD. (2005) Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci. 25(26):6119-26.
Ishii S Kihara Y, and Shimizu T. (2005) Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem. 280(10):9083-7.
Ji RR, Baba H, Brenner GJ, Woolf CJ. (2002) ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 22:478-485.
Joseph EK and Levine JD. (2010) Hyperalgesic priming is restricted to isolectinb4-positive nociceptors. Neuroscience 169: 431–435
Joseph EK, Chen X, Bogen O, Levine JD. (2008) Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain. 9(5):463-72.
Jordt SE, Tominaga M, Julius D. (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A. 97(14):8134-9.
Julius D and Basbaum AI. (2000) Molecular mechanisms of nociception. Nature 413, pp. 203-210.
Kandel ER, Schwartz JH and Jessell TM. (2000) Principles of neural science. 4th Edition.
Karim F, Wang CC, Gereau RW. (2001) Metabotropic glutamate receptor subtype 1 and 5 are activator of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci. 21:3771-3779.
Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD and Messing RO. (1999) A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron. 24(1):253-60.
Khawaja AM, Rogers DF. (1996) Tachykinins: receptor to effector. Int J Biochem Cell Biol. 28(7):721-38.
Kopp UC, Cicha MZ, Smith LA. (2002) PGE(2) increases release of substance P from renal sensory nerves by activating the cAMP-PKA transduction cascade. Am J Physiol Regul Integr Comp Physiol. 282(6):R1618-27.
Lee YJ, Zachrisson O, Tonge DA, McNaughton PA. (2002) Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci. 19(2):186-200.
Lopshire JC and Nicol GD. (1997). Activation and recovery of the PGE2-mediated sensitization of the capsaicin response in rat sensory neurons. J Neurophysiol 78, 3154–3164.
Ludwig MG Vanek M, Guerini D, Gasser JA, Jone CE, Junker U, Hofstetter H, Wolf RM and Seuwen K. (2003) Proton-sensing G-protein-coupled receptors. Nature. 425(6953):93-8.
Melhorn JM. (1998) Pain responses in patients with upper-extremity disorders. J Hand Surg Am. 23(5):954-5.
Mogil JS et al. (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci. 25(43):9893-901.
Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD. (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron. 19(4):849-61.
Neelands TR, Jarvis MF, Han P, Faltynek CR, Surowy CS. (2005) Acidification of rat TRPV1 alters the kinetics of capsaicin responses. Mol Pain. 1:28.
Premkumar LS, Ahern GP. (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature. 408(6815):985-90.
Price MP et al. (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron. 32(6):1071-83.
Reichling DB and Levine JD. (2009) Critical role of nociceptor plasticity in chronic pain Neurosciences. Vol.32 No.12
Radu CG, Yang LV, Riedinger M, Au M and Witte ON. (2004) T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. U. S. A. 101, pp. 245-250.
Radu CG, Nijagal A, McLaughlin J, Wang L and Witte ON. (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. U. S. A. 102, pp. 1632-1637.
Ryu S, Liu B, Yao J, Fu Q, Qin F. (2000) Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci. 27(47):12797-807
Sachs D, Villarreal CF, Cunha, FQ Parada CA and Ferreira SH. (2009) The role of PKA and PKCe pathways in prostaglandin E2-mediated hypernociception. British Journal of Pharmacology. 156, 826–834
Scholz J, Woolf CJ. (2002) Can we conquer pain? Nat Neurosci. 5 Suppl:1062-7.
Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 106(3):229-39.
Steen KH, Steen AE, Kreysel HW, Reeh PW. (1996) Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain. 66(2-3):163-70.
Steen KH, Reeh PW, Steen KH. (1995) Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation. Neurosci Lett. 199(1):29-32.
Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH. (2002) Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci. 5(12):1319-26.
Tominaga M,Wada M & Masu M. (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. ProcNatl Acad Sci U S A 98, 6951–6956.
Treede RD. (1998) Pathophysiology and diagnosis in patients with sympathetically dependent pain. Schmerz. 12(4):250-60.
Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB & Geppetti P. (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5, 546–551.
Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 110(8):1185-90.
Vellani V, Mapplebeck S, Moriondo A, Davis JB & McNaughton PA. (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol. 534, 813–825.
Vellani V, Zachrisson O, McNaughton PA. (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol. 560(Pt 2):391-401.
Wang C, Gu Y, Li GW and Huang LYM. (2007) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584.1pp 191–203
Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F. (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem. 279(44): 45626-33.
Woolf CJ. (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686-688.
Woolf CJ and Salter MW. (2000) Neuronal plasticity: increasing the gain in pain. Science 288:2765-1769.
Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR, Zhao ZQ. (2007) Neurokinin-1 Receptor Enhances TRPV1 Activity in Primary Sensory Neurons via PKCε: A Novel Pathway for Heat Hyperalgesia. The Journal of Neuroscience 27(44): 12067-12077-12067
指導教授 孫維欣(Wei-hsin Sun) 審核日期 2011-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明