博碩士論文 992206005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.95.131.208
姓名 梁凱(Kai Liang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
(Intra-chip 10-Gbps Optical interconnect Module Using Polymer Waveguide with Silicon-Base 45˚Micro-Reflector)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出一個具45°反射面高分子聚合物波導之10-Gbps 晶片內部光學連接收發模組,此技術可應用於晶片上光學訊號傳遞。在架構上藉由一個具光學品質的矽基45°反射面,利用波長為850 nm的面射型雷射進入高分子聚合物波導經45°反射面轉折進入光檢測器。此模組包含45°反射面、高分子聚合物波導、高頻傳輸線、銀銦焊料、850 nm面射型雷射與光檢測器。
本研究完成具45°反射面之高分子聚合物波導收發模組之光學模擬、製程以及量測結果;而量測包含了波導光路與模組之光學特性、高頻傳輸線特性、主動元件特性和收發模組之眼圖。在光學方面,高分子聚合物波導的傳遞損耗為 -0.353 dB/cm、45˚反射面之轉折損耗則是 -0.4325 dB,而整個模組的光學耦合效率為 -2.798 dB,由此可證明此模組在晶片上的應用是確實可行的。
  在模組的高頻特性方面,在操作電流為8 mA下訊號以10-Gbps的傳輸速率時,其光檢測器所接收到的光電流為0.632 mA,模組在沒有加IC的情況下,眼圖眼高為16 mV、抖動為24.77 ps、訊雜比可達7.29,此外,本模組可同時驅動4通道 × 10Gbps,其眼圖量測皆在傳輸10-Gbps的標準之上,從實驗數據驗證了我們提出的晶片內部光連接模組在可在低功耗下處理10-Gbps的訊號傳輸。
摘要(英) In this thesis, we propose an intra-chip 10-Gbps optical interconnect module using a silicon optical bench (SiOB) integrated with polymer waveguides and silicon-based 45˚ micro-reflectors. In the module, a 850-nm vertical-cavity-surface-emitted-laser (VCSEL) array and a photo-detector array are assembled on the proposed SiOB using Ag/In solder bumps. The 10-Gbps data is operated using the transmission lines plated on the SiOB. The laser beam emitting from the VCSEL array is coupled into the polymer waveguide via a silicon 45˚micro-reflector at the input port. At the output port, the laser beam is coupled out SiOB via another silicon 45˚ micro-reflector.
  In the fabricated polymer waveguide, it propagation loss of -0.353 dB/cm, the bending loss of -0.4325 dB per 45˚micro-reflector are measured. The insertion loss of whole polymer waveguide with an optical length of 0.5 cm in the proposed module is -2.798 dB. It demonstrates that the polymer waveguide with Si-based 45˚reflector in the module is practicable for on-chip applications.
  In the fabricated module, the measurement of high-frequency characteristic is show as follow. As the VCSEL array is biased at 8 mA, without IC at the module, the clear eye diagram with an eye high of 16 mV, a jitter of 24.77 ps, and the signal-to-noise ratio of 7.29 is demonstrated at the data rate of 10 Gbps. The experiment data verifies the proposed intra-chip module can be operated at 10 Gbps with a low power consumption.
關鍵字(中) ★ 高分子聚合物波導
★ 45˚矽基反射面
★ 光連接
★ 晶片內
關鍵字(英) ★ polymer waveguide
★ optical interconnect
★ intra-chip
論文目次 中文摘要……………………………………………………………………………………i
英文摘要…………………………………………………………………………………ii
目錄……………………………………………………………………iii
圖目錄…………………………………………………………………v
表目錄…………………………………………………………………xi
第一章 序論 …………………………………………………………1
   1-1 前言 ……………………………………………………1
    1-2 研究動機 …………………………………………………4
    1-3 研究目的……………………………………………………………………………10
第二章 高分子聚合物波導收發光學模組設計………………………………12
2-1 高分子聚合物波導光學模組結構尺寸設計………………12
2-2 高分子聚合物光學模組及光學準位與公差分析………18
2-3 高頻傳輸線設計與分析…………………………………………………24
第三章 高分子聚合物收發光學組件製作………………………………………29
3-1 具45°反射面矽基光學平台製程………………………29
3-2 高頻傳輸線與銀铟焊料之金屬製程……………………33
3-3 高分子聚合物波導與覆晶封裝製程……………………38
第四章 高分子聚合物收發模組之量測與分析………………42
    4-1 高分子聚合物波導之光學特性與元件特性量測………43
    4-1.1 高分子聚合物波導光學特性量測………………43
    4-1.2 面射型雷射與光檢測器特性量測………………47
4-2 高分子聚合物收發模組之光學與高頻特性量測………51
    4-2.1 高分子聚合物收發模組光學特性量測…………51
    4-2.2 高頻傳輸線特性量測……………………………53
    4-2.3 高分子聚合物收發模組高頻特性量測…………55
第五章 結論與未來展望……………………………………………66
參考文獻………………………………………………………………69
參考文獻 1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, (1997).
2. D. A. B. Miller, “Rationale and challenges for optical interconnects toelectronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000).
3. R. Ho, K. Mai, and M. Horowitz,“The Future of Wires,” IEEE, pp.490-504, Apr (2001).
4. R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE Journal. Lightwave Technol., 26, 2136-2141, (2008).
5. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE Journal. Sel. Top. Quantum Electron., 9, 624-635 ( 2003).
6. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber optic components for telecom- anddatacom-application,” IEEE Trans. On Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
7. H.S. Lee, S. S. Lee, and Y. S. Son, “CWDM based HDMIinterconnect incorporating passively aligned POF linked optical subassembly modules,” Opt. Express 19, 15380–15387, (2011).
8. IBM, “Development of on-chip optical interconnects for future Exascale computing systems,” (2010).
9. F. Doany, C. Schow, C. Baks, D. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. Offrein and J. Kash, “160-Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS Based Transceivers,” IEEE Trans. Adv. Pkg, Vol. 32, No. 2, pp. 345-359, May (2009).
10. L. Chen and M. Lipson, ”Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express, vol. 17, no. 10, pp. 7901–7906, May (2009).
11. L. Vivien, M. Rouviere, J.-M. Fedeli, D. M.-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. E. Melhaoui, E. Cassan, X. L. Roux, D. Pascal, and S. Laval, ”High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express, vol. 15, no. 15, pp. 9843–9848, July (2007).
12. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, ”Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15248–15256, Aug. (2009).
13. H. Park, A. W. Fang, S. Kodamaa, and J. E. Bowers, ”Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express, vol. 13, no. 23, pp. 9460–9464, Nov. (2005).
14. Integrated Systems Center SI, “Gate-all-around silicon sub-micron devices and integrated photonics for on-chip signaling,” (2011).
15. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
16. Saha, Tapas Kumar, Lu, Mingyu, Ma, Zhenqiang; Zhou, Weidong. 2012. "Design of an Angle Detector for Laser Beams Based on Grating Coupling."Micromachines 3, no. 1: 36-44.(2012)
17. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on lasers and electro-optics /international quantum electronics conference,” OSA Technical Digest, CTuC6., 2009.
18. Kenji Kintaka and Junji Nishii, “Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves,” OSA Optics Express, Vol. 12, Issue 14, pp. 3072-3078 (2004).
19. Long Chen, Kyle Preston, Sasikanth Manipatruni, and Michal Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” OSA Optics Express, Vol. 17, Issue 17, pp. 15248-15256 (2009).
20. Matthew Mancuso, Julie M. Goddard, and David Erickson, “Nanoporous polymer ring resonators for biosensing.” OSA Optics Express, Vol. 20, Issue 1, pp. 245-255 (2012).
21. Berkehan Ciftcioglu, Rebecca Berman, and Jian Zhang, “A 3-D integrated intrachip free-space optical interconnect for many-core chip” IEEE Photonics Technology Letters, VOL.23, NO. 3.
22. 陳進達, “以矽基光學平台為基礎之4通道 × 10-Gbps光學連接模組之接收端研究,” (中央大學光電碩士論文, 台灣, 2010)
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明