博碩士論文 992206016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:107.21.85.250
姓名 謝宗翰(Tsung-Han Hsieh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較
(Design and Analysis of Plasmonic Waveguide Bends Using Conformal Mapping Incorporated with Transmission-Line Network Approach: Comparisons with Numerical Results)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究
★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中我們結合保角映射理論與傳輸線理論並首次應用於非對稱「金屬-多層介電質」表面電漿90度圓弧波導結構,並以此方法設計一能同時提供橫電(TE)模態與橫磁(TM)模態高傳輸效率之次波長圓弧波導。於此方法中,圓弧波導可運用保角映射理論等效成直線幾何結構,後續使用傳輸線法解析於保角映射後之折射率分佈下,導波模態之等效折射率並做後續之傳播損耗與模態轉換損耗之分析計算。
研究中發現,當操作波長為1550 nm下,TM模態與TE模態隨銀厚度增加至100 nm後,其等效折射率之實部與虛部皆會收斂。理論分析中定義有效橫向寬度為保角映射後之橫向折射率分佈對映射後之轉彎結構各區域寬度之積分。將有效橫向寬度對不同轉彎半徑分析並與以有限時域差分(Finite-Different Time-Domain, FDTD)法為基礎之數值模擬相互比較後發現有效橫向寬度能物理性地描述TM模態於此非對稱「金屬-介電質」表面電漿90度圓弧轉彎結構之傳輸行為。將「直線波導-圓弧轉折波導-直線波導」經保角映射等效後可視為有效橫向寬度為「窄-寬-窄」之直線結構。而由寬至窄結構時會有部分能量逸散至空氣中。
最佳化設計中,解析計算發現可將矽區域與二氧化矽區域寬度分別減少至150 nm與50 nm,並由功率移轉分析中發現可移去連接轉彎區域波導與輸出端模態轉換器之直線結構。最終可得在轉彎區域面積為0.2165微米平方下,TM模態與TE模態傳輸效率分別達到90.50 %與93.22 %。
摘要(英) This thesis describes an analytical approach to analyze subwavelength 90̊ curved waveguide bend in an asymmetric metal/multi-insulator configuration. This approach employs the conformal mapping to first transform a curved waveguide bend into an equivalent straight waveguide structure and then calculate the modal index of the guided mode under the continuously-varying index profile using the transmission line network method. The propagation loss and mode transition loss along the curved waveguide bend are quantified accordingly.
Based on the convergence of the attenuation constant at the operating wavelength of 1550 nm, the width of the silver region is set to 100 nm. We then define the effective transverse width as the integral of the transformed index profile over the transverse axis in the radial direction. When quantified as a function of the bending radius, the newly defined parameter is found to be in good agreement in tendency with the finite-difference-time-domain-method-based numerical simulations and can be used to describe physically the TM wave behavior along the curved bending. In general, the curved bending region along with the input/output straight sections can be treated conceptually as a structure composed of narrow, wide, narrow sections connected in sequence. Significant power loss occurs at the interface going from the wide section to the narrow section.
Following the analytical analysis and power interchange studies, the width of silicon and silica regions are reduced to 150 nm and 50 nm, respectively, and the respective TM and TE transmissions could be up to 90.50% and 93.22% with a curved bending area of 0.2165 /mum^2.
關鍵字(中) ★ 表面電漿
★ 保角映射
★ 圓弧轉折結構
關鍵字(英)
論文目次 中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 介電質圓弧轉折波導 3
1.3.2 表面電漿圓弧轉折波導之發展 6
第二章 結構描述 9
2.1 表面電漿轉折波導結構 9
2.2 圓弧轉折結構之初步設計 11
第三章 圓弧轉折波導之等效直線結構理論 13
3.1 保角映射理論用於二維純量波動方程式 13
3.2「金屬-多層介電質」圓弧轉折結構之保角映射 17
3.3 均勻多層介質之等效傳輸線網路描述 19
3.4 橫向電磁場之分佈計算 22
第四章 結果與討論 27
4.1 研究方法流程與簡述 27
4.2 銀區域之寬度對等校折射率影響 28
4.3 矽寬度與二氧化矽寬度對傳播損耗之影響 29
4.4 波導模態轉換損耗 34
4.5 解析解與數值模擬結果之比較 37
4.5.1 解析解結果 37
4.5.2 數值模擬結果 43
4.6 模態在結構中傳輸之能量分析 54
4.6.1 TM模態在結構中傳輸之歸一化能量分布情形 55
4.6.2 TE模態在結構中傳輸之歸一化能量分布情形 57
4.7 最佳化結構設計 59
第五章 結論 63
參考文獻 65
參考文獻 [1] H.-Y. Chen, C.-C. Chen, F.-K. Hsueh, J.-T. Liu, C.-Y. Shen, C.-C. Hsu, S.-L. Shy, B.-T. Lin, H.-T. Chuang, C.-S. Wu, C. Hu, C.-C. Huang, and F.-L. Yang, "16nm functional 0.039µm2 6T-SRAM cell with nano injection lithography, nanowire channel, and full TiN gate," IEDM, pp. 28.7.1-28.7.3, 2009.
[2] R. W. Wood, "On remarkable case uneven distribution of light in a diffraction grating spectrum," Proc. Physical Soc., vol. 18, pp. 269-275, Jun. 1902.
[3] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev., vol. 106, pp. 874-881, Jun. 1957.
[4] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. A: Hadrons Nucl., vol. 216, pp. 398-410, Jul. 1968.
[5] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, New York: Springer, 1988.
[6] 張勝雄、戴朝義, "奈米電漿子波導元件於積體光學之應用," 物理雙月刊, vol. 卅卷六期, pp. 631-642, 2008.
[7] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, vol. 73, pp. 035407, Jan. 2006.
[8] E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J., vol. 48, pp. 2103-2132, Mar. 1969.
[9] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron., vol. QE-11, pp. 75-83, Feb. 1975.
[10] J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A, vol. 1, pp. 742-753, Jul. 1984.
[11] W. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol., vol. 14, pp. 429-436, Mar. 1996.
[12] E.-G. Neumann, "Curved dielectric optical waveguides with reduced transition losses," IEE Proc., vol. 129, pp. 278-280, Oct. 1982.
[13] J. Yamauchi, M. Ikegaya, and H. Nakano, "Bend loss of step-index slab wave-guides with a trench section," Microw. Opt. Technol. Lett., vol. 5, pp. 251-254, Jun. 1992.
[14] M. K. Smit, E. C. M. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical wave-guide bends," J. Lightwave Technol., vol. 11, pp. 1737-1742, Nov. 1993.
[15] C. H. Seo and J. C. Chen, "Low transition losses in bent rib waveguides," J. Lightwave Technol., vol. 14, pp. 2255-2259, Oct. 1996.
[16] W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol., vol. 18, pp. 1161-1166, Mar. 2000.
[17] I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Ferandez, "Transition, radiation and propagation loss in polymer multimode waveguide bends," Opt. Express, vol. 15, pp. 669-679, Jan. 2007.
[18] P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express, vol. 14, pp. 9197-9202, Oct. 2006.
[19] L. Chen, B. Wang, and G. P. Wang, "High efficiency 90 degrees bending metal heterowaveguides for nanophotonic integration," Appl. Phys. Lett., vol. 89, pp. 243120, Dec. 2006.
[20] Z. Sun, "Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding," Appl. Phys. Lett., vol. 91, p. 111112, Sep. 2007.
[21] A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to 90 degrees bends," Opt. Lett., vol. 32, pp. 2354-2356, Aug. 2007.
[22] A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett., vol. 90, pp. 211101, May. 2007.
[23] H. S. Chu, E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., vol. 96, pp. 221103, May. 2010.
[24] Y.-J. Chang and Y.-C. Liu, "Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration," Opt. Express, vol. 19, pp. 3063-3076, Feb. 2011.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2013-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明