博碩士論文 992206021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.188.20.56
姓名 賴韋志(Wei-Chih Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 拉伸式長週期光纖光柵的模態色散現象研究
(Characterization of Modal Dispersion for Periodically Tapered Long-Period Fiber Gratings)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 液晶填充分佈式布拉格反射鏡波導★ 高分子分散液晶薄膜用於可調變全像影像之研究
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 可調式窄頻液晶濾波器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文,我們著重於拉伸式以及無拉伸式長週期光纖光柵之頻譜響應以及模態色散特性之探討研究。我們使用Mathematica 7.0來解三層結構下(纖核、纖殼以及周圍介質)長週期光纖光柵之不同模態等效折射率,並且使用LabVIEW 2010來計算色散值。我們假設對稱性的耦合模態下,不同的拉伸比例、不同折射率的周圍介質,模擬各個不同模態的等效折射率。模擬結果顯示,具有些微拉伸結構的長週期光纖光柵,由於模場較集中在纖核,和沒有拉伸結構的相比,具有以下特性:1.在空氣中,些微拉伸的長週期光纖光柵,在同樣的光柵週期以及纖殼模下,具有較長的共振波長。2.當周遭介質折射率改變時,具些微拉伸結構的長週期光纖光柵共振波長飄移比未拉伸的小;這顯示具些微拉伸結構的長週期光纖光柵在環境擾動下較穩定。3.在空氣中,具些微拉伸結構的長週期光纖光柵,其纖核模與纖殼模之色散值差異較大。
因此,對於非用為感測應用的長週期光纖光柵而言,具些微拉伸結構之長週期光纖光柵相較於未拉伸之長週期光纖光柵在環境擾動影響下具有較穩定特性,且具些微拉伸結構之長週期光纖光柵的色散特性使其可用為穩定的色散調製元件。
摘要(英) In this thesis, we focus on the study of resonance spectral response and dispersion characteristics of tapered and non-tapered long-period fiber gratings (LPFG). We use Mathematica 7.0 to simulate the effective indices of different modes of LPFGs with three layer structure: core, cladding and surrounding media; and use LabVIEW 2010 to calculate the dispersion values. We assume symmetric mode coupling to simulate the effective indices and dispersion of LPFGs with different taper ratio and surrounding media. The simulated results show that slightly tapered LPFGs have the following characteristics compared to non-tapered LPFGs: 1. In the air, slightly tapered LPFG will have longer coupling wavelength compared to non-tapered LPFG with the same grating period and cladding mode. 2. When the refractive index of surrounding medium is changed, the coupling wavelength shift of slightly tapered LPFG is smaller than that of non-tapered LPFG; it means that the slightly tapered LPFG is more stable to environmental fluctuations compared to non-tapered LPFG. 3. In the air, the dispersion difference for core and cladding modes of slightly tapered LPFG is larger than that of non-tapered LPFG.
As a result, for non-sensing related LPFGs, slightly tapered LPFGs are more stable to environmental fluctuations than non-tapered LPFGs, and the dispersion characteristics of slightly tapered LPFGs make them suitable for dispersion compensation devices.
關鍵字(中) ★ 長週期光纖光柵
★ 色散
關鍵字(英) ★ dispersion
★ LPFG
★ long-period fiber grating
論文目次 CONTENTS
中文摘要 i
ABSTRACT ii
ACKNOWLEDGMENT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1-1 Introduction of Fiber Gratings 1
1-2 Motivation of the Research 3
1-3 Structure of the Thesis 3
Chapter 2 Theory of Long-Period Fiber Gratings 5
2-1 Phase-matching Condition 5
2-2 Coupled-Mode Theory 7
2-3 Spatial Mode Analysis 8
2-4 Dispersion Theory 11
2-4-1 Material Dispersion 11
2-4-2 Waveguide Dispersion 13
Chapter 3 Experimental and Simulation Results 15
3-1 Experimental Setup 15
3-1-1 Fabrication Process and Results 15
3-1-2 LPFG Sensing Measurement Setup 18
3-1-3 LPFG Dispersion Measurement Setup and Calculation 19
3-2 Experimental and Simulation Results 22
3-2-1 Effective Index Simulation of LPFGs 22
3-2-2 Dispersion Simulation and Measurement of LPFGs 29
3-2-3 Index and Temperature Sensitivity Measurement Results 34
Chapter 4 Conclusions and Future Work 37
4-1 Conclusions 37
4-2 Future Work 38
References 39
參考文獻 References
[1] K.O. Hill, Y. Fujii, D.C. Johnsen and B.S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication”, Appl. Phys. Lett. Vol. 32, pp. 647-649, 1978.
[2] G. Meltz, W.W. Morey and W.H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method”, Opt. Lett., Vol. 14, pp. 823-825, 1989.
[3] P. J. Lemaire, R.M. Atkins, V. Mizrahi and W.A. Reed, “HIGH PRESSURE H2 LOADING AS A TECHNIQUE FOR ACHIEVING ULTRAHIGH UV PHOTOSENSITIVITY AND THERMAL SENSITIVITY IN GeO2 DOPED OPTICAL FIBERS”, Electron. Lett., Vol. 29, pp. 1191-1193, 1993.
[4] D.Z. Anderson, V. Mizrahi, T. Erdogan and A.E. White, “PRODUCTION OF IN-FIBRE GRATINGS USING A DIFFRACTIVE OPTICAL ELEMENT”, Electron. Lett., Vol. 29, pp. 566-568, 1993.
[5] J. Albert, K.O. Hill, B. Malo, S. Theriault, F. Bilodeau, D.C. Johnson and L.E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency”, Electron. Lett., Vol. 31, pp. 222-223, 1995.
[6] W.H. Loh, M.J. Cole, M.N. Zervas, S. Barcelos, and R.I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber–scanning beam technique”, Opt. Lett., Vol. 20, pp. 2051-2053, 1995.
[7] D.D. Davis, T.K. Gaylord, E.N. Glytsis, S.G. Kosinski, S.C. Mettler and A.M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses”, Electron. Lett., Vol. 34, pp. 302-303, 1998.
[8] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings”, Opt. Lett., Vol. 25, pp. 710-712, 2000.
[9] A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings”, Appl. Opt., Vol. 42, pp. 3776-3779, 2003.
[10] Kin Seng Chiang, Yunqi Liu, Mei Nar Ng and Xiaoyi Dong, “Analysis of etched long-period fibre grating and its response to external refractive index”, Electron. Lett., Vol. 36, pp. 966-967, 2000.
[11] Turan Erdogan, “Fiber Grating Spectra”, J. Lightwave Technol., Vol. 15, pp. 1277-1294, 1997.
[12] A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan and J.E. Sipe, “Long-Period Fiber Gratings as Band-Rejection Filters”, J. Lightwave Technol., Vol. 14, pp. 58-65, 1996.
[13] N.S. Bergano, C.R. Davidson, “Long-period fiber-grating-based gain equalizers”, Opt. Lett., Vol. 21, pp. 336-338, 1996.
[14] S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber”, Opt. Lett., Vol. 31, pp. 2532-2534, 2006.
[15] S. Ramachandran, Zhiyong Wang and Man Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers”, Opt. Lett., Vol. 27, pp. 698-700, 2002.
[16] H.J. Patrick, A.D. Kersey and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction”, J. Lightwave Technol., Vol. 16, pp. 1606-1612, 1998.
[17] M. G. Xu, J.-L. Archambault, L. Reekie and J.P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors”, Electron. Lett., Vol. 30, pp. 1085-1087, 1994.
[18] K.C. Hsu, N.K. Chen, C.L. Lee, Y.S. Chih, P.J. Jhuang, Y.C. Lai and C.L. Lin, “Spectral Response of Long-Period Fiber Grating Based on Tapered Fiber With Side-Contacted Metal Grating”, J. Lightwave Technol., Vol. 28, pp. 1057-1063, 2010.
[19] T. Erdogan, “Fiber Grating Spectra”, J. Lightwave Technol., Vol. 15, pp. 1277-1294, 1997.
[20] S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber”, Opt. Lett., Vol. 31, pp. 2532-2534, 2006.
指導教授 戴朝義、徐桂珠
(Chao-Yi Tai、Kuei-Chu Hsu)
審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明