博碩士論文 992206027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.175.191.168
姓名 蔡和諺(Ho-yen Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
(5-Gbps Optical Interconnect Module Realized on Ceramic Substrate with High-Speed Via-Hole Structure)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,提出在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組,以系統級封裝(System in Package, SiP)之技術,將光學次封裝平台(Optical Sub-Assembly, OSA)、發射端驅動IC和接收端TIA整合至陶瓷基板上,其中發射端驅動IC和接收端TIA的封裝是以覆晶接合(Flip-Chip Bonding)方式所完成,且以高速穿孔連接光學次封裝平台與印刷電路板之間的三維訊號傳遞。
首先,我們從設計端評估適用於此模組的被動電路,包含高速穿孔、單端訊號(Single-Ended)傳輸線和差動訊號(Differential)傳輸線的散射參數(Scattering Parameter)模擬和量測;傳輸線和高速穿孔架構是以共平面波導(Coplanar Waveguide, CPW)的方式來設計。由高速穿孔和差動傳輸線所構成之被動電路,當操作頻率為5-GHz時,其反射損耗約為-11.84 dB而插入損耗約為-1.7 dB。在整體模組的高頻特性上,實際量測5-Gbps眼圖,證明高速穿孔與光連接垂直整合架構是具有可行性的和未來發展的潛力。
摘要(英) In this thesis, a 5-Gbps optical interconnect module realized on a ceramic substrate with high-speed via-holes is proposed. An optical sub-assembly (OSA), a transmitter driver IC, and a receiver TIA are combined on a ceramic substrate using the system in packaging (SIP) technology. In the packaging approaches, the transmitter driver IC and receiver TIA are assembled using the flip-chip bonding method. Then, the solder bumps are applied to assemble the proposed optical interconnect module onto the printed circuit board (PCB). Finally, high-speed via-holes provide 3-D signal connectivity between OSA and PCB. As a result, a 3-D optical interconnect module has been demonstrated.
In the design, the simulation and measurement results of S-parameters are analyzed for the passive circuit with high-speed via-holes, single-ended transmission lines, and differential transmission lines. Both high-speed via-holes and transmission lines are designed based on the coplanar waveguide structure. The module consisting of high-speed via-holes and differential transmission lines is also analyzed. Its return loss and insertion loss are -11.84 and -1.7 dB, respectively, at 5-GHz. The eye diagram of whole module has been validated at the data rate of 5-Gbps. The high-speed via-holes in the module is practicable in the application of optical interconnect.
關鍵字(中) ★ 光學連接模組
★ 系統級封裝
★ 穿孔
關鍵字(英) ★ optical interconnect module
★ SiP
★ via-hole
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 陶瓷基板實現高速穿孔之光學連接模組架構 6
第二章 光學連接模組之高頻被動電路設計 9
2-1 設計原理與流程 10
2-2 扇狀型傳輸線設計 14
2-3 穿孔結構尺寸設計 18
2-3-1 穿孔陣列週期 19
2-3-2 穿孔直徑尺寸 22
2-4 模組整體高頻模擬分析 26
2-5 面射型雷射與光檢測器到IC之高頻傳輸線設計與量測 30
第三章 光學連接模組之元件與製程 32
3-1 面射型雷射與光檢測器 32
3-2 驅動積體電路 35
3-3 穿孔製程與模組之COB製程 37
第四章 光學連接模組之高頻特性量測 40
4-1 量測系統架構介紹 40
4-1-1 高頻散射參數量測系統 40
4-1-2 眼圖量測系統 42
4-2 模組內之被動電路高頻散射參數量測分析 43
4-2-1 扇狀型傳輸線量測 43
4-2-2 穿孔結構量測 46
4-3 模組整體高頻散射參數量測分析 52
4-4 封裝對高頻特性影響之評估 57
4-5 面射型雷射和光檢測器到IC之高頻傳輸線量測 60
4-6 模組發射端眼圖量測分析 63
第五章 結論與未來展望 66
5-1 結論 66
5-2 模組之頻率響應改善分析與探討 67
5-3 未來展望 70
參考文獻 74
參考文獻 [1] E. Beyne, “The Rise of the 3rd Dimension for System Integration”, IEEE, pp.1-5,
2006.
[2] “3D-IC 之半導體製程技術評估報告”,工業技術研究院,2008.
[3] Y. P. R. Lamy et al., “RF characterization and analytical modelling of through silicon
vias and coplanar waveguides for 3-D integration,” IEEE Trans. Adv. Packag., vol. 33,
no. 4, pp. 1072–1079, Nov. 2010.
[4] L. Cadix, C. Bermond, C. Fuchs, A. Farcy, P. Leduc, L. DiCioccio, M. Assous, M.
Rousseau, F. Lorut, L. L. Chapelon, B. Flecht, N. Sillon, and P. Ancey, “RF
characterization and modelling of high density through silicon vias for 3D chip
stacking,” Microelec. Eng., vol. 87, pp. 491–495, 2010.
[5] Intel’s official website:
http://blogs.intel.com/technology/2010/01/ces_2010_-_light_peak.php?wapkw=%28li
ght+peak%29
[6] H. Takahara, “Optoelectronic multichip module packaging technologies and optical
input/output interface chip level packages for the next generation of hardware
systems,” Selected Topics in Quantum Electronics, IEEE Journal of 9 (2), 443-451,
2003.
[7] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip
level optical interconnects,” IEEE J. Sel. Top. Quantum Electron, 24(2), 927-934,
2006.
[8] T. Yoshinaga, M. Nomura, “Trends in R&D in TSV Technology for 3D LSI
Packaging,” Science&Technology Trends ,no.37,October 2010.
[9] S.K. Lim, “Physical Design for 3D,” IEEE Design & Test, pp. 532-539,2005.
[10] R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber,
“Efficient planar-integrated free-space optical interconnects fabricated by a
combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14),
2136-2141 (2008).
[11] P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS
system, ” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635, 2003.
[12] N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, 2002.
[13] C. Berger, B. J. Offrein, and M. Schmatz, “Challenges for the introduction of board-level optical interconnect technology into product development roadmaps,”
presented at the Photonics West, San Jose, CA, Paper 6124-18, 2006.
[14] P. Pepeljugoski, et al. “Low power and high density optical interconnects for future
supercomputers,” in Proc. OFC, paper OthX2, 2010.
[15] Hsu-Liang Hsiao, Hsiao-Chin Lan, Chia-Chi Chang, Chia-Yu Lee, Siou-Ping Chen,
Chih-Hung Hsu, Shuo-Fu Chang, Yo-Shen Lin, Feng-Ming Kuo, Jin-Wei Shi, and
Mount-Learn Wu, “Compact and passive-alignment 4-channel × 2.5-Gbps optical
interconnect modules based on silicon optical benches with 45° micro-reflectors”
Optics Express, Vol. 17, Issue 26, pp. 24250-24260 (2009).
[16] 盧冠甫,“矽基光學平台技術為核心之雙向4 通道 ? 10-Gbps 光學連接收發模
組”,(中央大學光電所碩士論文,台灣,2011).
[17] E. Eid, et al. “Characterization and modeling of RF substrate coupling effects in 3D
integrated circuit stacking,” Microelectronic Engineering, pp. 729–733,2011
[18] D. E. Bockelman, W. R. Eisenstadt, “Combined Differential and Common-Mode
Scattering Parameters: Theory and Simulation,” IEEE Transactions on Microwave
Theory and Techniques, vol. 43, no.7 , 1995.
[19] Krishnan Venkatakrishnan and Bo Tan, “Interconnect microvia drilling with a radially
polarized laser beam,” Journal of Micro-mechanics and Micro-engineering,
pp.2603-2607,2006
[20] T. G. Ruttan, et al. “Multiport VNA Measurements,”IEEE Microwave Magizine,
pp1527-3342, 2008.
[21] D. M. Pozar, “Microwave Engineering,” John Wiley & Sons,Inc, 2005.
指導教授 伍茂仁、林祐生
(Mount-learn Wu、Yo-shen Lin)
審核日期 2012-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明