博碩士論文 992206035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:168 、訪客IP:54.174.43.27
姓名 李中華(Chung-hua Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光聲影像顯微術之研究
(Study of photoacoustic imaging microscopy)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬
★ 基於純量繞射理論以遠場聲場重建光聲影像之研究★ 基於光聲訊號之三維資訊重建
★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究★ 紅外線穩態熱阻量測法之石墨層影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光聲成像系統同時擁有光學影像和超音波影像的優點,其能夠及時成像及高對比度、高解析度和非侵入式等優點,光聲效應利用物體對光波長的選擇性吸收,及利用超音波的高穿透性來接收訊號,超音波成像雖然有高穿透的特性,其利用聲音在遇到不同介質時的反射波來判斷物體的結構,但遇到人體上較多軟組織時,超音波探測器將會難以接收到反射聲波,導致對比度下降影像無法分辨物體,且超音波成像的解析度與聲波波長有關,波長太長也會造成相鄰物質無法分辨,影響影像解析度及真實性,而光聲成像利用物體選擇性吸收的高差異性來製作影像,造成影像的高對比性,且擁有光學影像的高解析度及超音波影像的低散射性。
本研究的光聲成像系統使用波長為1064 nm的Q-switch雷射激發物體,能夠讓吸收體在短時間內吸收高能量,以利偵測光聲訊號,及使用Galvo system控制雷射光路掃描物體得到到影像,另外本研究還將雷射光導入光學顯微鏡,整合光學顯微鏡同時得到光學影像及光聲影像,且顯微物鏡也提供給本光聲成像系統高解析度。
摘要(英) Photoacoustic imaging systems have the advantages of both optical imaging and ultrasonic imaging. It is capable of doing real-time imaging noninvasive, while at the same time providing both high contrast and high resolution images. Photoacoustic effect uses the high transmittances of ultrasonic waves and the fact that materials absorb different wavelengths of light to obtain the signal.
The basic principle of ultrasonic imaging is when a wave goes from one medium to another, part of the wave will be reflected, and can be used to restructure the shape of the object. Ultrasonic waves can go really deep inside the human body, but the contrast inside soft tissues aren’t really good and would be difficult to distinguish the difference of it. The resolution of ultrasonic imaging is also related to the wavelength of the ultrasonic wave, wavelengths that are too long will result in a lower resolution image, and would be difficult to distinguish objects close to each other. However, photoacoustic imaging uses the highly different light absorption of materials to obtain high contrast images, and has the high resolution characteristic of optical imaging and the low scattering property of ultrasonic imaging
The photoacoustic imaging system used in our system contains basically a Q-switch laser with central wavelength of 1064 nm, a galvo system and an optical microscope. Using the Q-switch laser will allow the sample to absorb lots of energy in a short period of time, and will thereby enhance the photoacoustic signal we detect when the sample is excited. The galvo system allows us to control the laser light path, so that we can scan the sample and get photoacoustic image. Finally, by guiding the laser into the optical microscope, both the optical image and the photoacoustic image can be obtained at the same time. Moreover, the objective lens inside the microscope will also provide high resolution to the photoacoustic system.
關鍵字(中) ★ 光聲
★ 顯微術
★ 光聲成像
關鍵字(英) ★ Photoacoustics
★ microscopy
★ Photoacoustic imaging
論文目次 中文摘要 ii
Abstract iii
致謝 v
目錄 vii
圖目錄 x
第一章 序論 1
1.1 前言 1
1.2 動機 3
1.3 應用 4
1.4 論文架構 5
第二章 理論基礎 6
2.1 光聲原理 6
2.1.1 光聲訊號產生 6
2.1.2 初始光聲訊號 7
2.1.3 光聲波方程式 9
2.1.4 光聲波方程式的解 11
2.1.5 球型物體的脈衝激發 13
2.2 光聲成像 16
2.3 線性系統 19
2.3.1 線性和疊加 19
2.3.2 轉換函數 21
2.3.3 交叉相關 23
第三章 光聲成像架構 26
3.1 光學成像架構 26
3.2 樣品 31
3.2.1 碳纖維 31
3.2.2 鉻薄膜樣品 32
3.2.3 解析度測試片 33
3.3 實驗步驟 35
3.4 訊號處理 37
第四章 實驗結果 39
4.1 光聲訊號 39
4.2 靈敏度 41
4.2.1 碳纖維的光聲訊號 41
4.2.2 鉻的光聲訊號 44
4.3 解析度 47
4.3.1 平面解析度 47
4.3.2 深度解析度 57
4.4 平面的光聲影像 61
4.5 三維圖形 63
第五章 討論與未來展望 70
5.1 結論 70
5.2 未來展望 71
參考文獻 72
參考文獻 [1] Alexander Graham Bell, “Selenium and the photophone,” Nature, vol. 22, no. 569, pp. 500-503, 1880.
[2] Minghua Xu and Lihong V. Wang, “Photoacoustic imaging in biomedicine,” AIP,vol. 77, no. 4,pp. 1-22, 2006.
[3] A. A. Karabutov, E. V. Savateeva and A. A. Oraevsky, “Optoacoustic Tomography:New Modality of Laser Diagnostic Systems,” Laser Phys., vol. 13, no. 5, pp. 711-723, 2003.
[4] Joël J. Niederhauser, Michael Jaeger, et al., “Combined Ultrasound and Optoacoustic System for Real-Time High-Contrast Vascular Imaging in Vivo,” IEEE, vol. 24, no. 4, pp. 436-440, 2005.
[5] Xueding Wang, Yongjiang pang, et al., “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol., vol. 21, no. 7, pp.803-806, 2003.
[6] Konstantin Maslov, Hao F. Zhang, Song Hu, and Lihong V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett., vol. 33, no. 9, pp. 929-931, 2008.
[7] Adam de la Zerda, Yannis M. Paulus, et al., “Photoacoustic ocular imaging,” Opt. Lett., vol. 35, no. 3, pp. 270-272, 2010.
[8] Xueding Wang, Xueyi Xie, Geng Ku, Lihong V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt., vol. 11, no. 2, pp. 1-9, 2006.
[9] V.E. Gusev, A.A. Karabutov, “Qualitative theory of thermooptical sound excitation in a liquid,” in Laser Optoacoustics. New York: AIP, 1993, pp. 1-12.
[10] Lihong V. Wang, Hsin-I Wu, “Photoacoustic tomography,” in Biomedical optics principles and imaging. Hoboken, New York: Wiley, 2007, pp. 238-321.
[11] G. J. Diebold, T. Sun and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Amer. Phys. Soc., vol. 67, no. 24, pp. 3384-3389, 1991.
[12] Zhixing Xie, Shuliang Jiao, Hao F. Zhang, Carmen A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett., vol. 34, no. 12, pp. 1771-1773, 2009.
[13] V. P. Zharov, E. I. Galanzha and E. V. Shashkov, “In vivo photoacoustic flow cytometry formonitoring of circulating single cancer cells and contrast agents,” Opt. Lett., vol. 31, no. 24, pp. 3623-3625, 2006.
[14] Joseph W. Goodman, “Analysis of two-dimensional signals and systems,” in Introduction to fourier optic, 3rd ed. Greenwood Village, CO: Robberts, 2005, pp. 18-22.
[15] Wikipedia. Cross-correlation. [Online]. Available:http://en.wikipedia.org/wiki/Cross-correlation
[16] THOELABS. Mounts. [Online]. Available:http://www.thorlabs.hk/thorproduct.cfm?partnumber=KM100V/M
[17] EDMUND OPTICS. Testing target. [Online]. Available:http://www.edmundoptics.com/imaging/test-targets/resolution-test-targets/1951-usaf-glass-slide-resolution-targets/1790
指導教授 鍾德元(Te-yuan Chung) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明