博碩士論文 992206036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.189.177
姓名 黃天佑(Tien-yu Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
(Silicon-Based 10-Gbps Optical Interconnect Module with Two Output Ports Using Vertically Splitting Optical Paths)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在此論文提出一個具有垂直分岔光路的雙輸出矽基光學連接模組,此模組將高分子聚合物光波導與數個矽基45°微反射面整合形成一組垂直分光器,此分光器具有將光訊號一分為二的功能,為此光學連接模組提供了兩組可進行三維光學傳輸的光學通道。此光學連接模組具有用來分光的三組45°微反射面,高頻傳輸線、雷射封裝所使用的銀銦焊料,以及導光的高分子聚合物光波導。
在光學特性上,此光學連接模組的總耗損為-6.6 dB,分光比例為0.124 : 0.095。此一分為二的垂直分光器使得矽基光學平台得以具有雙輸出通道。模組高頻電特性(high-frequency response)量測上,證明兩個通道均能通過10-G Ethernet的眼罩測試,由此可驗證此光學連接模組具備雙通道10-Gbps的資料傳輸能力。
摘要(英) In this thesis, the silicon-based 10-Gbps optical interconnect module with two vertically splitting output ports is demonstrated. The 1 × 2 vertically splitting configuration is realized using polymer waveguides integrated with several 45°silicon micro–reflectors. The proposed silicon-based splitter with two out-of-plane outputs is designed for 3-dimensional on-chip optical interconnects. The proposed vertically splitting paths combined with high-frequency transmission lines and Ag/In bonding pads are developed for integrating the vertical-cavity-surface-emitting-laser (VCSEL) on it to form a optical interconnect module.
The optical characteristics of proposed structure including the insertion loss of -6.6 dB and the splitting ratio of 0.124 : 0.095 is obtained. For the high-frequency characteristics of 1 × 2 optical splitting module, The clear eye patterns operated at a data rate of 10Gbps verifies that the silicon-based 1 × 2 vertical optical splitter successfully transmits the optical signal at such a high data rate.
關鍵字(中) ★ 分光器
★ 光連接
★ 高分子聚合物
關鍵字(英) ★ Optical splitter
★ polymer waveguide
★ optical interconnect
論文目次 中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 緒論 1
1-1 研究動機與目的 1
第二章 垂直分岔雙輸出光路之矽基光連接模組設計 9
2-1 光電元件之特性量測 9
2-2 垂直分岔雙輸出之高分子聚合物光波導設計 12
2-2.1 垂直分岔雙輸出之光波導尺寸設計 12
2-2.2 垂直分岔雙輸出之矽基光學平台之光學訊號分析 16
2-3 高頻傳輸線散射參數之模擬與分析 19
第三章 垂直分岔雙輸出矽基光學連接模組製作開發 24
3-1 矽基光學平台之製程與開發 24
3-2 金屬製程與矽基光學平台之整合 27
3-2.1 45°微反射面之高反射率金屬層製程開發 27
3-2.2 10-GHz高頻傳輸線之製程開發 30
3-2.3 覆晶封裝之金屬焊料製程開發 33
3-3 具分光結構之高分子聚合物光波導製作 36
3-4 面射型雷射之覆晶封裝製程 39
第四章 垂直分岔雙輸出之光連接模組量測與分析 41
4-1 覆晶封裝製程對元件造成之影響分析 41
4-2 垂直分岔雙輸出之光波導量測與分析 43
4-3 垂直分岔雙輸出之光連接模組高頻特性量測 48
4-3.1 高頻傳輸線散射參數之量測 48
4-3.2 垂直分岔雙輸出之光連接模組高頻特性量測 51
第五章 結論 54
參考文章 56
參考文獻 1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, (1997)
2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000)
3. R. Ho, K. Mai, and M. Horowitz,“The Future of Wires,” IEEE, pp. 490-504, Apr (2001)
4. R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE Journal. Lightwave Technol., 26, 2136-2141 (2008).
5. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE Journal. Sel. Top. Quantum Electron., 9, 624-635 (2003).
6. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber optic components for telecom- anddatacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
7. Bahram Jalali, Sasan Fathpour, “Silicon Photonics,” IEEE Journal of Lightwave Technology., Vol. 24, no. 12, December 2006
8. Takahara, "Optoelectronic multichip module packaging technologies and optical input/output interface chiplevel packages for the next generation of hardware systems," Selected Topics in Quantum Electronics, IEEE Journal of 9 (2), 443-451, 2003
9. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE Journal. Sel. Top. Quantum Electron., 24(2), 927-934
10. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. on Advan. Packag., vol. 32, no. 2, pp. 345-359, May 2009.
11. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, ”Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. on Advan. Packag., vol. 31, no. 4, pp. 759-767, Nov. 2008.
12. T. Shibata and A. Takahashi, “Flexible opto-electronic circuit board for in-device interconnection,” Electro. Compo. and Tech. Conference, pp. 261-267, 2008.
13. L. Vivien, X. L. Roux, S. Laval, E. Cassan, and D. M.-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1354-1358, Nov. 2006.
14. J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides,” Journal of Light. Tech., vol. 30, no. 11, pp. 1563-1568, June 2012.
15. C. J. Brooks, A. P. Knights, and P. E. Jessop, “Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI,” Opt. Express, vol. 19, no. 4, pp. 2916-2921, Feb. 2011.
16. Choon-Gi Choi, Sang-Pil Han, Byeong Cheol Kim, Seung-Ho Ahn, and Myung-Yung Jeong, “Fabrication of Large-Core 1×16 Optical Power Splitters in Polymers Using Hot-Embossing Process,” IEEE Photonics Technology Letters, vol. 15, no. 6, June (2003)
17. Shau-Gang Mao et al., “Analysis of coplanar waveguide-to-coplanar stripline transitions,”IEEE Trans. Microwave Theory Tech., vol.48, no. 1, Jan . 2000.
18. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators, A, 84(1), 116-125 (2000)
19. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17(23), 20938-20944 (2009)
20. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17(13), 10514-10521 (2009)
21. K.-M. Chu, J.-S. Lee, B. S. Rho, H. S. Cho, H.-H. Park, and D. Y. Jeon, “Optimization of low temperature flip chip bonding for VCSEL arraysfor polymeric-waveguide-integrated optical interconnection systems,” in Proc. 9th Microoptics Conf. (MOC), Tokyo, Japan, Oct. 29–31, 2003, pp.402–405
22. Microresist Web site: http://www.microresist.de/products/negative_photoresists/pdf/po_pi_epo_en_07062201_ls_neu.pdf
指導教授 伍茂仁(Mount-learn Wu) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明