博碩士論文 992206037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:107.21.85.250
姓名 陳俊宇(Chun-Yu Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
(Higher-Order-Mode-Synthesized Waveguide Plasmonic Bragg gratings Using Semi-Analytical Approach)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器
★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較
★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究
★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究發展一半解析法以快速計算具有三維金屬與多層介電質組態之表面電漿波導布拉格光柵。相較於全三維數值模擬方法如有限元素法(Finite-Element Method)或時域有限差分法(Finite-Difference-Time-Domain Method),此半解析法可大幅減少所需之計算時間與計算資源。於此近似過程中,三維電漿子波導布拉格光柵結構之橫向與縱向變化將分別被考慮。首先,將具有對於波導寬度作正弦調變之光柵單位週期切分為數個區段,每一區段皆近似於一直線型之「金屬-多層介電質-金屬」表面電漿波導。利用三維數值方法做模態分析,直線波導之模態分布以及相對應之有效折射率可於考慮電場與磁場之所有分量之計算後獲得。此一包含所有區段之序列可被合成為一個一維多層有損介質光柵。而經轉換後之一維有損多層介質光柵之禁帶與反射率頻譜可利用嚴格之傳輸線法計算而得。
將此半解析法應用於設計以第二階模態合成之表面電漿波導光柵,並且以三維全向量(full-vector)之時域有限差分法及有限元素法做數值模擬驗證。經由數值模擬與半解析法近似結果計算所得之布拉格波長,其誤差值介於0.0012~0.0399,顯示此半解析法具有相當程度之可靠性。對於具有較多週期數量或是利用第三階模態合成之光柵,其結果亦經由模擬取得並於本論文中加以討論。對半解析法所合成之結構稍做調整所得之表面電漿波導光柵具有中心波長位於1540 nm及半高全寬頻寬(full-width-at-half-maximum bandwidth) 12.7 nm之禁帶,且其位於禁帶之傳輸率為17.77%。此波導光柵之總長小於9
另一方面,本研究亦利用模擬熱退火最佳化演算法對以半解析法合成之光柵於三維數值模擬計算中進行最佳化設計。以一具有50 nm之半高全寬頻寬且中心波長位於1550 nm之禁帶為目標頻譜,並要求其傳輸率於通帶與禁帶分別為85%及0%。經由此最佳化之方式,最終可得到最佳化之頻譜其禁帶具有半高全寬頻寬42.6 nm,且其中心波長為1544 nm,於通帶及禁帶則分別具有約80%及4.496%之傳輸率。結果與所設定之目標頻譜相符。
摘要(英) In this research, a semi-analytical approach is developed to facilitate the design of three-dimensional (3D) plasmonic waveguide Bragg gratings in metal/multi-insulator/metal (MMIM) configuration. When compared to the full-vector 3D numerical simulations, this method consumes less time and computational resources. In this method, the unit cell of the sinusoidally-width-modulated grating is approximated by a series of straight MMIM waveguides. By using the 3D finite-element method (FEM), the guided modes and their mode distributions/effective indices supported by the straight MMIM waveguide can be obtained. The corresponding 1D grating can then be constructed by replacing the straight waveguides with layers of the corresponding effective indices. It can then be conveniently analyzed by the transmission-line method, and the forbidden band(s) and the reflectance can be obtained accordingly.
The semi-analytical approach is verified by the 3D full-vector numerical simulations based on the finite-difference-time-domain method and FEM for gratings synthesized using the 2nd-order mode. It is shown that the errors (absolute values) in the Bragg wavelength range from 0.0012 to 0.0399. This shows that the semi-analytical approach is valid and very reliable. For gratings using more unit cells and those synthesized using the 3rd-order mode, their corresponding spectra are also studied numerically and discussed in this thesis. A modified MMIM plasmonic Bragg grating which has a FWHM bandwidth of 12.7 nm centered at 1540 nm with a total length of < 9 is achieved. The transmission at the Bragg wavelength is 17.77%.
Finally, the 3D MMIM waveguide grating synthesized using the semi-analytical approach is optimized using 3D full-vector numerical simulations incorporated with the simulated annealing algorithm. The optimized transmission spectrum of a 7710-nm long MMIM grating has a bandwidth of 42.6 nm centered at 1544 nm, and the transmittance in the pass band and stop band is about 80% and 4.496%, respectively. The final transmission spectrum fits well with the predefined spectrum.
關鍵字(中) ★ 波導
★ 電漿子
★ 布拉格光柵
★ 高次模態
關鍵字(英) ★ Bragg grating
★ waveguide
★ plasmonic
論文目次 中文摘要 i
Abstract iii
謝誌 v
Table of Content vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1. Introduction 1
1.2. Motivation 2
Chapter 2 Problem Statement 8
2.1. Structure Description 8
Chapter 3 The Semi-Analytical Approach 11
3.1. The 3-D Electromagnetic Problem 11
3.2. Overview 14
3.3. Staircase Approximation 14
3.4. Numerical Computations of Modal Indices 16
3.5. One-Dimensional Grating and Bragg Condition 21
3.6. Transmission Line Method 25
3.6.1. Two-Tone Periodic Layered Medium 24
3.6.2. A Stack of Layers in One Period 27
3.6.3. Termination Condition 28
3.6.4. Infinite Periodic Structure 29
3.7. Stopband Prediction Using the Transmission-Line Network Approach 31
3.7.1. 1-D Approximation Based on the 2nd-Order Mode for Bragg Orders 1 to 6 32
3.7.2. Band Structure of A Two-Tone Periodic Medium 34
3.7.3. Band Structure of the Sinusoidally-Width-Modulated Plasmonic Waveguide Grating 36
3.7.4. Convergence Test on the Number of Slices Used in Staircase Approximation 38
Chapter 4 Results and Discussions 40
4.1. 3-D MMIM Plasmonic Waveguide 40
4.1.1. Property of Metal 40
4.1.2. Determination of Device Height 44
4.1.3. Normalization Consideration 44
4.2. Comparisons between 3-D Numerical Simulations and the Semi-Analytical Approximation 47
4.2.1. Results from 3-D FDTD-Based Simulations 47
4.2.2. Comparisons between 3-D Numerical Simulations and 1-D Analytical Predictions 50
4.2.3. Bragg Condition Using the 2nd-Order Mode for the First 9 Orders 53
4.2.4. Power Flow Investigation 55
4.2.5. Effect of Number of Periods on Lower Bragg Orders 55
4.2.6. Comparisons between Grating Synthesized using the 2nd- and 3rd-Order Modes 57
4.3. Optimizations of 3-D MMIM Waveguide Grating 58
4.3.1. Modifications from Preliminary 3-D Results 58
4.3.2. Optimizations of 3-D MMIM Gratings Using Simulated-Annealing Algorithm 59
Chapter 5 Conclusions 63
References 65
參考文獻 [1] E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, vol. 311, pp. 189-193, Jan. 2006.
[2] H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett., vol. 96, p. 097401, 2006.
[3] S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, vol. 1, pp. 641-648, Nov. 2007.
[4] H. A. Atwater, "The promise of plasmonics," Sci. Am., vol. 296, pp. 56-63, Apr. 2007.
[5] R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today, vol. 9, pp. 20-27, Jul. - Aug. 2006.
[6] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, Aug. 2003.
[7] B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett., vol. 79, pp. 51-53, Jul. 2001.
[8] R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B, vol. 104, pp. 6095-6098, Jul. 2000.
[9] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett., vol. 23, pp. 1331-1333, Sep. 1998.
[10] A. V. Krasavin and A. V. Zayats, "Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides," Phys. Rev. B, vol. 78, Jul. 2008.
[11] R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett., vol. 25, pp. 844-846, Jun. 2000.
[12] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A, vol. 21, pp. 2442-2446, Dec. 2004.
[13] X.-T. Kong, W.-G. Yan, Z.-B. Li, and J.-G. Tian, "Optical properties of metal-multi-insulator-metal plasmonic waveguides," Opt. Express, vol. 20, pp. 12133-12146, 2012.
[14] N. N. Feng and L. Dal Negro, "Plasmon mode transformation in modulated-index metal-dielectric slot waveguides," Opt. Lett., vol. 32, pp. 3086-3088, Nov. 2007.
[15] T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, "Wavelength selection by dielectric-loaded plasmonic components," Appl. Phys. Lett., vol. 94, Feb. 2009.
[16] S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, "Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Phys. Lett., vol. 98, Jan. 2011.
[17] C. L. Chen, Foundations for guided-wave optics: Wiley-Interscience, 2007.
[18] G. M. Jiang, R. Y. Chen, Q. A. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, "Slab-Modulated Sidewall Bragg Gratings in Silicon-on-Insulator Ridge Waveguides," IEEE Photonics Technol. Lett., vol. 23, pp. 6-8, Jan. 2011.
[19] V. G. Ta’’eed, D. J. Moss, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D. X. Xu, "Higher order mode conversion via focused ion beam milled Bragg gratings in Silicon-on-Insulator waveguides," Opt. Express, vol. 12, pp. 5274-5284, Oct. 2004.
[20] K. Finsterbusch, N. J. Baker, V. G. Ta’’eed, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Higher-order mode grating devices in As2S3 chalcogenide glass rib waveguides," J. Opt. Soc. Am. B: Opt. Phys., vol. 24, pp. 1283-1290, Jun. 2007.
[21] J. Xiao, J. S. Liu, Z. Zheng, Y. S. Bian, and G. J. Wang, "Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide," J. Opt., vol. 13, Oct. 2011.
[22] A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol., vol. 24, pp. 912-918, Feb. 2006.
[23] J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express, vol. 16, pp. 413-425, Jan. 2008.
[24] Y. J. Chang, "Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating," Opt. Express, vol. 18, pp. 13258-13270, Jun. 2010.
[25] Y. J. Chang and G. Y. Lo, "A narrowband metal-multi-insulator-metal waveguide plasmonic Bragg grating," IEEE Photonics Technol. Lett., vol. 22, pp. 634-636, May. 2010.
[26] COMSOL, Multiphysics User’’s Guide ver. 3.5a, 2008.
[27] Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photonics Technol. Lett., vol. 19, pp. 91-93, Jan. - Feb. 2007.
[28] N. Marcuvitz and I. o. E. Engineers, Waveguide handbook: McGraw-Hill, 1951.
[29] Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, vol. 282, pp. 1679-1682, Nov. 1998.
[30] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics: Wiley-Interscience, 2007.
[31] P. Yeh, Optical waves in layered media: Wiley, 2005.
[32] Y. J. Chang and C. Y. Chen, "Higher-order-mode-synthesized plasmonic Bragg reflection using quasi-analytical approach," 2012.
[33] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., vol. 37, pp. 5271-5283, Aug. 1998.
[34] P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2012-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明