博碩士論文 992206042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.172.236.135
姓名 張育譽(Yu-Yu Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙螢光粉光學模型之研究及其演色性之評估
(A study of optical modeling and evaluation of color rendering property of a dual-phosphor system)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究
★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測★ 發光二極體導光機構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文奠基於孫慶成教授所領導之固態照明實驗室所建立之螢光粉光學模型,利用紅綠雙螢光粉為材料,進行其混粉光學模型之建立與分析。此等效螢光粉光學模型可用來評估一白光 LED 在各特定螢光粉配方下之封裝效率,以及色彩於空間上之分布。藉由模型的開發,成功的利用模擬與實驗驗證,比較混粉及分層之螢光粉配置方式下,空間色偏與封裝效率及演色性之差異,突破文獻中僅能以實驗進行探討之缺陷。在高演色性的光源應用當中,封裝方式有相當多種,因此如何有效由光學模型來進行效率及色彩部分的分析相當重要。藉由實驗進行分析及優化,以發展出高效率且高演色性之封裝型式。最後實際應用至燈具當中進行光學特性之評估與分析以提升其光色品質。
摘要(英) In this thesis, on the basis of the phosphor optical models developed in the solid-state lighting laboratory whose supervisor is Dr. Ching-Cherng Sun, green and red phosphor mixture optical model has been well established. Under some specific green to red phosphor doping proportions, this model can be utilized to simulate the chromatic properties, spatial CCT distributions, and packaging efficiency. On the benefits of applying the phosphor optical model, the confusion about mixture or layer phosphor configuration can perform better could be solved. The comparison and analysis of these phosphor configurations can be made not only in experiment but also in simulation to discuss in more details. There are several types of packaging structures in high color quality applications. Consequently, the importance of phosphor optical model cannot be overestimated. With the help of experimental analysis and optimized in simulation, a packaging structure with high color quality and high efficiency has been approved. Finally, this light source with high performance is utilized in the luminaire to improve the color and energy saving properties.
關鍵字(中) ★ 白光LED
★ 螢光粉
★ 光學模型
★ 演色性
關鍵字(英) ★ White LEDs
★ Phosphor
★ Optical model
★ CRI
論文目次 摘要 I

Abstract II

目錄 VI

圖目錄 VIII

表目錄 XVI

第一章 緒論 1

1.1 前言 1

1.2 研究動機與目的 5

1.3 論文大綱 8

第二章 基本原理 10

2.1 引言 10

2.2 LED 發光原理 10

2.3 螢光粉發光原理 14

2.4 色彩光學 17

2.4.1 CIE XYZ 色彩空間 18

2.4.2 相關色溫 21

2.4.3 演色性 22

第三章 雙色螢光粉光學模型 25

3.1 螢光粉模型之文獻回顧 25

3.2 雙色螢光粉散射模型 28

3.3 雙色螢光粉之等效吸收係數與等效轉換效率 38

3.4 各螢光粉配比之光學模型驗證 48

第四章 不同螢光粉配置方式之雙螢光粉白光 LED 光色品質分析 55

4.1 雙螢光粉封裝架構 56

4.1.1 雙螢光粉混粉封裝架構與配方 57

4.2 分層與混粉之色彩表現比較與分析 60

4.2.1 分層與混粉之演色性比較與分析 61

4.2.2 分層與混粉之空間色偏比較與分析 68

4.3 分層與混粉之封裝效率比較與分析 80

4.3.1 混粉之封裝效率模型驗證與分層之封裝效率比較 82

第五章 遠離式空間分布之高效率及高演色性封裝實作與分析 86

5.1 遠離式空間分布之高效率白光 LED 封裝 87

5.2 遠離式空間分布之高效率白光 LED 封裝之應用 90

第六章 結論 102

參考文獻 105

中英文名詞對照表 115

參考文獻 [1] Wikipedia website, http://en.wikipedia.org/wiki/heinrich_G%C3%B6bel.

[2] M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).

[3] P. Waide and S. Tanishima, Light′s Labour′s Lost: Policies for Energy-Efficient Lighting (International Energy Agency, Paris, 2006).

[4] 孫慶成,2009固態照明研討會,國立中央大學,中華民國九十八年。

[5] J. Y. Tsao, An OIDA Technology Roadmap Update 2002 (Nov. 2002), http://www.netl.doe.gov/ssl/workshop/Report%20led%20November%202002a_1.pdf.

[6] LEDinside, http://www.ledinside.com.tw/node/9288/.

[7] Cree, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/ 300LPW-LED-barrier.

[8] LED inside, http://www.ledinside.com.tw/knowledge/20090909-8979.html.

[9] European commission, http://ec.europa.eu/news/energy/090901_en.htm.

[10] Australian customs notice no. 2009/04, http://www.customs.gov.au/web data/resources/notices/acn0904.pdf.

[11] Cree, http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXTE.pdf.

[12] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).

[13] JLEDs, http://www.led.or.jp/data/docs/JLEDS_Technical%20Report%20Vol2.pdf.

[14] ENERGY STAR, http://www.energystar.gov/index.cfm?c=ssl_res.pt_ssl/.

[15] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US 6507159 (2003).

[16] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).

[17] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).

[18] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).

[19] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).

[20] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).

[21] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).

[22] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).

[23] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).

[24] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express 5, 5055-5060 (2010).

[25] Y. Zhu and N. Narendran, “Investigation of remote-phosphor white light-emitting diodes with multi-phosphor layers,” Jpn. J. Appl. Phy. 49, 100203 (2010).

[26] Z. T. Li, Y. Tang, Z. Y. Liu, Y. E. Tan, and B. M. Zhu, “Detailed study on pulse-sprayed conformal phosphor configurations for LEDs,” J. Display Techno. 9, 433-440 (2013).

[27] C. W. Sher, K. J. Chen, C. C. Lin, H. V. Han, B. C. Lin, K. Y. Wang, J. R. Li, M. T. Wang, J. M. Hwang, M. H. Shih, C. C. Fu, and H. C. Kuo, “Enhancement of luminous efficiency by hybrid structure for warm white light-emitting diodes,” J. Solid State Lighting 1, 1-9 (2014).

[28] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).

[29] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).

[30] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).

[31] E. F. Schubert, Light Emitting Diode (Cambridge University Press, Cambridge, 2003).

[32] 陳隆建,發光二極體之原理與製程,全華圖書股份有限公司,台北縣,中華民國一百年。

[33] S. W. S. McKeever, M. Moscovitch, and P. D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses (Nuclear Technology Publishing, Ashford, 1995).

[34] S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, Boca Raton, 1999).

[35] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。

[36] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。

[37] International Commission on Illumination, Commission Internationale de l′Eclairage Proceedings (Cambridge University Press, Cambridge, 1931).

[38] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley and Sons, nc.,Danvers, 1982).

[39] The Colour & Vision Research Laboratory, http://www.cvrl.org/.

[40] International Commission on Illumination, CIE 15: Technical Report: Colorimetry, 3rd ed. (CIE, Vienna, 2004).

[41] International Commission on Illumination, CIE 13.3: Technical Report: Method of Measuring and Specifying Colour Rendering Properties of Light Sources (CIE, Vienna, 1995).

[42] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。

[43] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。

[44] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。

[45] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).

[46] 彭逸寧,雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。

[47] 陳靜儀,白光 LED 之螢光粉多功能模型之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。

[48] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零二年。

[49] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).

[50] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).

[51] Breault Research Organization, Inc., http://www.breault.com/.

[52] C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, and G. Leising, “Tailoring of the color conversion elements in phosphor-converted high power LEDs by optical simulations,” IEEE Photo. Techno. Lett. 20, 739-741 (2008).

[53] C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, G. Leising, and S. Tasch, “Silicate phosphors and white LED technology-Improvements and opportunities,” Proc. SPIE 6669, 66690O (2007).

[54] C. Sommer, F. P. Wenzl, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, “A detailed study on the requirements for angular homogeneity of phosphor converted high power white LED light sources,” Opt. Mater. 31, 837-848 (2009).

[55] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The effect of the phosphor particle sizes on the angular homogeneity of phosphor-converted high-power white LED light sources,” IEEE J. Selected topics in Quantum Electron. 15, 1181-1188 (2009).

[56] N. T. Tran and F. G. Shi, “Simulation and experimental studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Techno. 26, 3556-3559 (2008).

[57] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Techno. 27, 5145-5150 (2009).

[58] Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures,” IEEE Photo. Techno. Lett. 23, 137-139 (2011).

[59] Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photo. Techno. Lett. 20, 2027-2029 (2008).

[60] Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of phosphor’s location for high-power light-emitting diodes,” IEEE Transactions on Device and Materials Reliability 9, 65-73 (2009).

[61] Z. Liu, C. Li, B. Yu, Y. Wang, and H. Niu, “Effects of YAG: Ce phosphor particle size on luminous flux and angular color uniformity of phosphor-converted white LEDs,” J. Display Technol. 8, 329-335 (2012).

[62] D. Kang, E. Wu, and D. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89, 231102 (2006).

[63] C. Tsao, E. R. Freniere, and L. Smith, “Improved predictive modeling of white LEDs with accurate luminescence simulation and pratical inputs with TracePro® Opto-Mechanical design software,” Proc. SPIE 7231, 723111 (2009).

[64] C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color rendering index performance associated with correlated color temperature of white light-emitting diodes with two phosphors,” Opt. Eng. 51, 054003 (2012).

[65] 張容瑄,綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國九十九年。

[66] T. H. Yang, C. Y. Chen, Y. Y. Chang, B. Glorieux, Y. N. Peng, H. X. Chen, T. Y. Chung, T. X. Lee, and C. C. Sun, “Precise simulation of spectrum for green emitting phosphors pumped by a blue LED die,” IEEE Photon. J. 6, 8400510 (2014).

[67] 徐健紘,YAG 螢光粉摻雜散射粒子之光學模型,國立中央大學光電科學與工程學系碩士論文,中華民國一百零三年。

[68] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Techno. Lett. 23, 552-554 (2011).

[69] C. A. Costa, C. A. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107, 4747-4755 (2003).

[70] E. F. Schubert, J. K. Kim, H. Luo, and J. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys. 69, 3069 (2006).

[71] D. Aspnes, J. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292 (1979).

[72] D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368 (1975).

[73] P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566-613 (1900).

[74] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, London, 1999).

[75] K. Jacobsen, J. Norskov, and M. Puska, “Interatomic interactions in the effective-medium theory,” Phys. Rev. B 35, 7423 (1987).

[76] Cree, Inc., http://www.cree.com/led-chips-and-materials/chips/.

[77] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).

[78] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).

[79] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).

[80] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).

[81] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).

[82] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).

[83] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).

[84] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. SPIE 5530, 266-273 (2004).

[85] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumines. 132, 1252-1256 (2012).

[86] J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).

[87] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).

[88] I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).

[89] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated color temperature distribution of white LEDs from 2800K to 6500K,” Opt. Express 6, 6622-6630 (2012).

[90] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 6, 6137-6148 (2010).

[91] 林欣瑩,螢光粉塗佈圖形對白光 LED 封裝效率之影響研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零三年。

指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明