博碩士論文 992207002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.232.31.206
姓名 謝承志(Cheng-chih Hsieh)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
(Using Visual Search and Brain Stimulation to Investigate the Temporal and Featural Specifics of the Frontal Eye Fields)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前額葉眼動區(FEF)與準備眼動、產生眼動、控制眼動有重要關聯。過去研究假設FEF處理視覺訊息的方式是透過「顯著性地圖」(Salience map),來決定眼動的目標。用以結合所見資訊與大腦決策,決定眼動目標。其表徵整合過後的視覺訊息,包括視知覺訊息(即由下往上的bottom-up歷程),和內在產生的視覺目標(即由上往下的top-down歷程)。因此本實驗利用視覺搜尋作業來探討由下往上訊息如何受干擾物的性質與特徵影響,以及由上往下的歷程中,前額葉眼動區扮演的角色。
  本系列研究利用兩組實驗進行研究,一組操弄目標物與干擾物的相似性,一組操弄干擾物出現的時態,並使用跨顱磁刺激(TMS)與電刺激(tDCS)探究腦區與眼動行為之間的因果。所使用的行為指標是眼動反應時間與眼動彎曲率。前者代表眼動準備所需的時間,而後者選擇眼動該動往目標物或干擾物的競爭結果。當眼動成功的移往目標物,也就是成功的抑制動往干擾物的傾向,在神經元裡是對干擾物的反應抑制(distractor suppression),這樣的壓制程度多寡,便影響到眼動彎曲的程度。
  第一組實驗,欲探究由下往上與由上往下兩歷程,在顯著性地圖的影響,進而反應在眼動行為。透過目標物與干擾物可能顏色相同或是形狀相同,我們發現當顏色相同的情況,眼動所需花費的反應時間較長,眼動軌跡遠離干擾物的幅度也較大;當施打tDCS在FEF後,反應時間一致的降低,但相同顏色的情況,遠離干擾物的幅度更大了。這說明了在顯著性地圖上,顏色比起形狀更有顯著性,也再證實FEF與顯著性地圖的關係。
  第二組實驗,欲探究干擾物在目標物之前出現的不同時間點影響,進而影響對干擾物的反應抑制程度。實驗結果發現干擾物提前出現至少70毫秒,可以使得眼動往目標物的反應時間大幅降低,但眼動的彎曲程度並不受影響;TMS伴隨著干擾物出現時間施打後,TMS施打在FEF的情況,使得眼動遠離干擾物的情況減緩,也就是彎曲的較傾向干擾物,這意味著降低了干擾物的顯著程度,進而減少對干擾物的壓抑情況,但並沒有干擾眼動的反應時間。
  第二組實驗同時探討後頂葉皮質區(PPC),過去研究指出PPC與FEF在視覺搜尋作業上的功能類似。實驗結果發現,PPC受TMS影響後增長了眼動反應時間,但眼動彎曲率不受影響。這意味著PPC與FEF在眼動準備歷程中有相似但不同的功能。PPC可能主要負責由下往上的訊息處理;而FEF則著重在由上往下的過程。
  本碩論除了再次驗證了先前在FEF的顯著性地圖對眼動的影響,並提供了有力證據說明顏色比起形狀更有顯著性;同時透過操弄干擾物出現的時間,影響對干擾物的反應抑制程度,比較FEF與PPC的功能──前者著重處理由上往下的內在產生的視覺目標,後者則是處理由下往上的視知覺訊息。
摘要(英) The functional roles of the Frontal Eye Field (FEF) are preparation for saccades, saccade triggering, and controlling eye movements. Saccade goals are based on a salience map. This salience map is a convergence of both top-down (i.e. the decision for selection) and bottom-up (i.e. target and distractor features) processes. The current study examines the role of the FEF in these processes through the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). The distractor-related modulation of saccade latencies and trajectories are used as indicators. The saccade latencies are used to represent the saccade preparation time and the saccade trajectories represents the target selection and distractor suppression processes.
In the first series of experiments, the aim of the research was investigation of both top-down and bottom up processes and their relationship to the saliency map. The manipulation of target-distractor similarity and tDCS were used. In experiment 1-1, participants made reflexive saccades to a blue square target appearing with an accompanying distractor. The distractor was either a blue diamond or a green square, both of which share only one feature with the target. Behavioral results showed that the saccade latency was longer when the distractor was of the same color, implying that color has higher salience than shape.
In experiment 1-2, participants made voluntary saccades to peripheral locations specified by a central arrow-cue. The target was either a blue square or green diamond and was indicated on each trial. The distractors were the same as experiment 1-1, but the role of same color or same shape were defined by the target in each trial. The behavioral results showed no differences between these conditions. However, when tDCS was applied over participant’s rFEF, the saccades made curved more away from the distractor in the same color condition, and curved away less in same shape condition. This not only indicated the color has higher salience than shape, but also demonstrated a relationship between the saliency map hypothesis and FEF.
In experiment 2, the aim of the research was examining the distractor suppression role in FEF and comparing this with posterior parietal cortex (PPC). In this case, the appearance time of distractors was manipulated. The distractor and the TMS preceded the target by various lengths of time, i.e. short (70 ms), middle (150 ms), and long (300 ms). TMS was applied over either FEF or PPC, two critical areas for saccade generation. The results indicated that saccade latencies were significantly longer when distractors appeared slightly ahead of a target across all TMS conditions, but TMS over PPC increased saccade latency in all time conditions. Additionally, the initial slope of saccade curvatures decreased in the FEF TMS condition for all distractor time offsets. These results show that distractor suppression requires more than 70ms and also that the contingency between saccade latency and curvature was dissociated. Most importantly, evidence is provided for PPC and FEF involvement in saccade generation, but that this involvement is different, particularly in the case of distractor suppression.
The current study examined the degree to which distractor saliency modulates saccade curvature, and provides evidence that color has higher saliency than shape in this context. Increasing FEF activity by tDCS stimulation demonstrated its role in forming a saliency map for eye movement generation. Above all, differing roles of FEF and PPC are illustrated by the effects TMS in distractor suppression during the pre-saccadic period. FEF seems to have a role in top-down processes, and PPC a role in bottom-up processes.
關鍵字(中) ★ 眼動
★ 前額葉眼動區
★ 顯著性地圖
★ 跨顱磁刺激
★ 跨顱電刺激
★ 軌跡
★ 後頂葉皮質區
★ 反應抑制
★ 眼動反應時間
關鍵字(英) ★ saccade
★ FEF
★ PPC
★ TMS
★ tDCS
★ saccade curvature
★ saccade latencies
★ distractor suppression
★ Salience map
論文目次 碩博論文電子檔授權書 i
論文指導教授推薦書 ii
論文口試委員審定書 iii
中文摘要 iv
Abstract vi
Table of Contents ix
Table of Figures xi
Chapter 1: Introduction 1
1.1 Properties of a distractor 1
1.1.1 Salience Representation 2
1.1.2 Suppression hypothesis 4
1.1.3 Saccade curvature: behavioral measurement of saliency & suppression 6
1.1.3.1 When to deviate toward 7
1.1.3.2 When to deviate away 8
1.1.3.3 How to measure saccade curvature 9
1.1.3 Neural mechanisms underlying eye movement 10
1.1.3.1 Frontal Eye Field (FEF) 12
1.2 Timing of Distractor 18
1.2.1 Premotor Theory of Attention 18
1.3 Purpose of this thesis 19
Chapter 2: Experiment 1—Target/Distractor Similarity 22
2.1 Purpose 22
2.2 General Method 22
2.2.1 Measurements 22
2.2.1.1 Saccade latencies 22
2.2.1.2 Slope curvature 22
2.2.2 Transcranial direct current stimulation (tDCS) 23
2.3 Experiment 1-1 24
2.3.1 Method 24
2.3.2 Results 26
2.3.3 Discussion 27
2.4 Experiment 1-2 29
2.4.1 Method 29
2.4.2 Results 31
2.4.3 Discussion 32
Chapter 3: Experiment 2—Distractor Suppression 34
3.1 Purpose 34
3.2 General Method 35
3.2.1 Measurements 35
3.2.1.1 Slope one (S1) 35
3.2.2 Transcranial magnetic stimulation (TMS) 35
3.3 Experiment 2-1 37
3.3.1 Method 37
3.3.2 Results 39
3.3.3 Discussion 41
3.4 Experiment 2-2 42
3.4.1 Method 42
3.4.2 Result 44
3.4.3 Discussion 46
3.4.3.1 Posterior Parietal Cortex (PPC) 47
3.4.3.2 Corrected Saccade Latencies 48
3.5 Experiment 2-3 49
3.5.1 Method 49
3.5.2 Result 50
3.5.3 Discussion 54
Chapter 4: General Discussion 60
4.1 Conclusion and future direction 64
References 66
參考文獻 Bichot, N. P., Schall, J. D., & Thompson, K. G. (1996). Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 381(6584), 697-699.
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-1862.
Chang, C. F., Hsu, T. Y., Tseng, P., Liang, W. K., Tzeng, O. J., Hung, D. L., & Juan, C. H. (2013). Right temporoparietal junction and attentional reorienting. Hum Brain Mapp, 34(4), 869-877.
Chao, C. M., Tseng, P., Hsu, T. Y., Su, J. H., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., & Juan, C. H. (2011). Predictability of saccadic behaviors is modified by transcranial magnetic stimulation over human posterior parietal cortex. Human Brain Mapping, n/a-n/a.
Chen-Harris, H., Joiner, W. M., Ethier, V., Zee, D. S., & Shadmehr, R. (2008). Adaptive control of saccades via internal feedback. J Neurosci, 28(11), 2804-2813.
Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Curr Biol, 22(4), R108-111.
Connolly, J. D., Goodale, M. A., Goltz, H. C., & Munoz, D. P. (2005). fMRI activation in the human frontal eye field is correlated with saccadic reaction time. Journal of Neurophysiology, 94(1), 605-611.
Coren, S., & Hoenig, P. (1972). Effect of non-target stimuli upon length of voluntary saccades. Percept Mot Skills, 34(2), 499-508.
Coren, S., Ward, L. M., & Enns, J. T. (2004). Sensation and perception (6th ed.). Hoboken, NJ: J. Wiley & Sons.
DeSouza, J. F. X., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. Journal of Neurophysiology, 89(2), 1016-1023.
Doyle, M. C., & Walker, R. (2001). Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp Brain Res, 139(3), 333-344.
Doyle, M. C., & Walker, R. (2002). Multisensory interactions in saccade target selection: curved saccade trajectories. Exp Brain Res, 142(1), 116-130.
Everling, S., & Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci, 20(1), 387-400.
Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res, 58(3), 455-472.
Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147-150.
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427-430.
Heitz, R. P., & Schall, J. D. (2012). Neural mechanisms of speed-accuracy tradeoff. Neuron, 76(3), 616-628.
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. J Cogn Neurosci, 21(4), 760-775.
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., Walsh, V., Muggleton, N. G., & Juan, C. H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage, 56(4), 2249-2257.
Itti, L. (2005). Models of bottom-up attention and saliency. Neurobiology of Attention, 576-582.
Juan, C. H., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., Cowey, A., & Walsh, V. (2008). Segregation of Visual Selection and Saccades in Human Frontal Eye Fields. Cereb Cortex, 18(10), 2410-2415.
Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541-15544.
Kapoula, Z., Isotalo, E., Muri, R. M., Bucci, M. P., & Rivaud-Pechoux, S. (2001). Effects of transcranial magnetic stimulation of the posterior parietal cortex on saccades and vergence. Neuroreport, 12(18), 4041-4046.
Kapoula, Z., Yang, Q., Sabbah, N., & Vernet, M. (2011). Different effects of double-pulse TMS of the posterior parietal cortex on reflexive and voluntary saccades. Front Hum Neurosci, 5, 114.
Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4), 219-227.
Liang, W. K., & Juan, C. H. (2012). Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex. J Neurophysiol, 108(3), 741-752.
Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. J Exp Psychol Hum Percept Perform, 20(5), 1000-1014.
Ludwig, C. J. H., & Gilchrist, I. D. (2003). Target similarity affects saccade curvature away from irrelevant onsets. Experimental Brain Research, 152(1), 60-69.
Luppino, G., Rozzi, S., Calzavara, R., & Matelli, M. (2003). Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. European Journal of Neuroscience, 17(3), 559-578.
Marzi, C. A., Miniussi, C., Maravita, A., Bertolasi, L., Zanette, G., Rothwell, J. C., & Sanes, J. N. (1998). Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. Experimental Brain Research, 118(3), 435-438.
McPeek, R. M. (2006). Incomplete Suppression of Distractor-Related Activity in the Frontal Eye Field Results in Curved Saccades. Journal of Neurophysiology, 96(5), 2699-2711.
McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. Journal of Neurophysiology, 89(5), 2577-2590.
McPeek, R. M., Skavenski, A. A., & Nakayama, K. (2000). Concurrent processing of saccades in visual search. Vision Res, 40(18), 2499-2516.
McSorley, E., Haggard, P., & Walker, R. (2004). Distractor modulation of saccade trajectories: spatial separation and symmetry effects. Exp Brain Res, 155(3), 320-333.
McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. J Neurophysiol, 96(3), 1420-1424.
McSorley, E., Haggard, P., & Walker, R. (2009). The spatial and temporal shape of oculomotor inhibition. Vision Research, 49(6), 608-614.
McSorley, E., McCloy, R., & Lyne, C. (2012). The spatial impact of visual distractors on saccade latency. Vision Res, 60, 61-72.
Morris, A. P., Chambers, C. D., & Mattingley, J. B. (2007). Parietal stimulation destabilizes spatial updating across saccadic eye movements. Proc Natl Acad Sci U S A, 104(21), 9069-9074.
Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. J Neurophysiol, 89(6), 3340-3343.
Muggleton, N. G., Kalla, R., Juan, C. H., & Walsh, V. (2011). Dissociating the contributions of human frontal eye fields and posterior parietal cortex to visual search. J Neurophysiol, 105(6), 2891-2896.
Mulckhuyse, M., Van der Stigchel, S., & Theeuwes, J. (2009). Early and late modulation of saccade deviations by target distractor similarity. J Neurophysiol, 102(3), 1451-1458.
Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci, 5(3), 218-228.
Muri, R. M., Vermersch, A. I., Rivaud, S., Gaymard, B., & Pierrot-Deseilligny, C. (1996). Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. J Neurophysiol, 76(3), 2102-2106.
Pierrot-Deseilligny, C., Milea, D., & Muri, R. M. (2004). Eye movement control by the cerebral cortex. Curr Opin Neurol, 17(1), 17-25.
Pierrot-Deseilligny, C., Muri, R. M., Rivaud-Pechoux, S., Gaymard, B., & Ploner, C. J. (2002). Cortical control of spatial memory in humans: The visuooculomotor model. Annals of Neurology, 52(1), 10-19.
Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31-40.
Schall, J. D. (2002). The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1424), 1073-1082.
Schall, J. D. (2009). Frontal eye fields. Encyclopedia of Neuroscience, 4, 367-374.
Schall, J. D., Morel, A., King, D. J., & Bullier, J. (1995). Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci, 15(6), 4464-4487.
Schall, J. D., & Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annu Rev Neurosci, 22, 241-259.
Schiller, P. H., & Chou, I. H. (1998). The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nature Neuroscience, 1(3), 248-253.
Sheliga, B., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98(3), 507-522.
Silvanto, J., Lavie, N., & Walsh, V. (2006). Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J Neurophysiol, 96(2), 941-945.
Stagg, C. J., O’Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009). Modulation of movement-associated cortical activation by transcranial direct current stimulation. European Journal of Neuroscience, 30(7), 1412-1423.
Styles, E. A. (2006). The psychology of attention (2nd ed.). New York: Psychology Press.
Suzuki, M., & Gottlieb, J. (2013). Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nature Neuroscience, 16(1), 98-104.
Taylor, P. C., Nobre, A. C., & Rushworth, M. F. (2007). FEF TMS affects visual cortical activity. Cereb Cortex, 17(2), 391-399.
Terao, Y., & Ugawa, Y. (2002). Basic mechanisms of TMS. J Clin Neurophysiol, 19(4), 322-343.
Theeuwes, J., Olivers, C. N. L., & Chizk, C. L. (2005). Remembering a Location Makes the Eyes Curve Away. Psychological Science, 16(3), 196-199.
Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Prog Brain Res, 147, 251-262.
Thompson, K. G., Bichot, N. P., & Sato, T. R. (2005). Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Journal of Neurophysiology, 93(1), 337-351.
Thompson, K. G., Bichot, N. P., & Schall, J. D. (1997). Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophysiol, 77(2), 1046-1050.
Thompson, K. G., Hanes, D. P., Bichot, N. P., & Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol, 76(6), 4040-4055.
Tipper, S. P., Howard, L. A., & Jackson, S. R. (1997). Selective reaching to grasp: Evidence for distractor interference effects. Visual Cognition, 4(1), 1-38.
Tipper, S. P., Howard, L. A., & Paul, M. A. (2001). Reaching affects saccade trajectories. Experimental Brain Research, 136(2), 241-249.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol, 12(1), 97-136.
Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience and Biobehavioral Reviews, 30(5), 666-679.
Van der Stigchel, S., & Theeuwes, J. (2005). Relation between saccade trajectories and spatial distractor locations. Cognitive Brain Research, 25(2), 579-582.
Walker, R., & McSorley, E. (2008). The influence of distractors on saccade target selection: saccade trajectory effects. Journal of Eye Movement Research.
Walker, R., McSorley, E., & Haggard, P. (2006). The control of saccade trajectories: direction of curvature depends on prior knowledge of target location and saccade latency. Percept Psychophys, 68(1), 129-138.
Walker, R., Techawachirakul, P., & Haggard, P. (2009). Frontal eye field stimulation modulates the balance of salience between target and distractors. Brain Res, 1270, 54-63.
Walker, R., Techawachirakul, P., & Haggard, P. (2009). Frontal eye field stimulation modulates the balance of salience between target and distractors. Brain Research, 1270, 54-63.
Walsh, V., & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37(2), 125-135.
Wolfe, J. M. (1994). Visual search in continuous, naturalistic stimuli. Vision Res, 34(9), 1187-1195.
Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880-1882.
Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford ; New York: Oxford University Press.
Zenon, A., Filali, N., Duhamel, J. R., & Olivier, E. (2010). Salience representation in the parietal and frontal cortex. J Cogn Neurosci, 22(5), 918-930.
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2013-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明