博碩士論文 992207006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.23.219.12
姓名 葉菀婷(Wan-ting Yeh)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 母語為中文與英文者偵測頻率掃描訊號方向之事件相關腦電波研究
(Detection of Frequency-Modulated Sweep Direction by English and Chinese Speakers: An ERP Study)
相關論文
★ 語音知覺與中文識字能力的關係★ 於虛擬環境中之雙耳時間差偵測機制研究
★ 動態聽覺編碼在3D空間中的神經相關機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 調頻 (frequency modulation)是構成複雜溝通訊號的基本聽覺元素,舉凡人類語言、音樂至同物種發聲。調頻掃描(frequency-modulated sweeps)是調頻中重要的類別之一,可提供語言編碼(speech encoding)與詞匯特徵(lexicon distinction)等重要線索,此線索以語調語言(tonal language)尤為明顯。本實驗致力於偵測調頻掃描訊號處理中的聽覺敏感度與語言經驗,並執行心理物理學與事件相關腦電位實驗。實驗一,利用非配對誘發電位成分(mismatch negativity component)探討分辨線性頻率掃描訊號方向之神經基質。實驗二,利用非配對誘發電位成分與行為分辨(discrimination)實驗,探討變化複合頻率掃描訊號的方向、頻寬與速率之敏感度。實驗三,母語為中文及英文受試者參與聽覺閾限追蹤實驗,此實驗目的為檢測語言經驗影響基礎調頻處理程度。行為實驗顯示,中文為母語受試者擁有較準確的辨別能力於第一共振峰的頻間(600-900Hz),且不受刺激長短影響(30, 100 及300毫秒)均有出色的辨別能力;但在基頻頻間(180-270Hz),只有較長的刺激(100及300毫秒)表現較好。事件相關腦電位實驗顯示,中文為母語的受試者,在不受注意力介入的情況下,僅在較長(100及300毫秒)的下行訊號之條件,仍可辨認頻率掃描訊號及複合頻率掃描訊號之方向。非配對誘發電位成分的振幅在較長的訊號與第一共振峰的頻率區間較大,代表偵測能力較好。聽覺閾限追蹤實驗(auditory threshold tracking)顯示中文受試者分辨頻率掃描訊號的能力比英文受試者更好,隱含著複合調頻訊號之敏感度會隨語言經驗而不同。研究結果顯示語言經驗會影響非語言知覺性聽覺訊號處理,如調頻掃描訊號。
摘要(英) 調頻 (frequency modulation)是構成複雜溝通訊號的基本聽覺元素,舉凡人類語言、音樂至同物種發聲。調頻掃描(frequency-modulated sweeps)是調頻中重要的類別之一,可提供語言編碼(speech encoding)與詞匯特徵(lexicon distinction)等重要線索,此線索以語調語言(tonal language)尤為明顯。本實驗致力於偵測調頻掃描訊號處理中的聽覺敏感度與語言經驗,並執行心理物理學與事件相關腦電位實驗。實驗一,利用非配對誘發電位成分(mismatch negativity component)探討分辨線性頻率掃描訊號方向之神經基質。實驗二,利用非配對誘發電位成分與行為分辨(discrimination)實驗,探討變化複合頻率掃描訊號的方向、頻寬與速率之敏感度。實驗三,母語為中文及英文受試者參與聽覺閾限追蹤實驗,此實驗目的為檢測語言經驗影響基礎調頻處理程度。行為實驗顯示,中文為母語受試者擁有較準確的辨別能力於第一共振峰的頻間(600-900Hz),且不受刺激長短影響(30, 100 及300毫秒)均有出色的辨別能力;但在基頻頻間(180-270Hz),只有較長的刺激(100及300毫秒)表現較好。事件相關腦電位實驗顯示,中文為母語的受試者,在不受注意力介入的情況下,僅在較長(100及300毫秒)的下行訊號之條件,仍可辨認頻率掃描訊號及複合頻率掃描訊號之方向。非配對誘發電位成分的振幅在較長的訊號與第一共振峰的頻率區間較大,代表偵測能力較好。聽覺閾限追蹤實驗(auditory threshold tracking)顯示中文受試者分辨頻率掃描訊號的能力比英文受試者更好,隱含著複合調頻訊號之敏感度會隨語言經驗而不同。研究結果顯示語言經驗會影響非語言知覺性聽覺訊號處理,如調頻掃描訊號。
關鍵字(中) ★ 頻率掃描訊號
★ 事件相關腦電位
★ 非配對誘發電位
★ 聽覺閾限追蹤
★ 語調語言
★ 語言經驗
關鍵字(英) ★ frequency-modulated (FM)
★ event-related potentials (ERPs)
★ mismatch negativity (MMN)
★ auditory threshold tracking
★ tonal language
★ language experience
論文目次 Abstract-------------------------------------------------------------------------------- i
中文摘要-------------------------------------------------------------------------------iii
Acknowledgment--------------------------------------------------------------------------iv
Table of Content -----------------------------------------------------------------------vi
List of Figures ------------------------------------------------------------------------ix
1. Introduction ------------------------------------------------------------------- 1
1-1 Frequency modulated sweeps ----------------------------------------------------- 1
1-1-1 Direction in FM sweeps --------------------------------------------------------- 2
1-1-2 Formant frequency in speech ---------------------------------------------------- 3
1-1-3 Temporal scale in FM sweeps ---------------------------------------------------- 3
1-1-4 Literature review--------------------------------------------------------------- 4
(1) Animals studies on FM sweeps processing ---------------------------------------- 4
(2) MEG studies on FM sweeps processing--------------------------------------------- 5
(3) fMRI studies on FM sweeps processing-------------------------------------------- 6
1-2 Language experiences ----------------------------------------------------------- 7
1-2-1 Corticofugal hypothesis -------------------------------------------------------- 7
1-2-2 Perceptual signal processing --------------------------------------------------- 8
1-2-3 Literature review-------------------------------------------------------------- 10
(1) Psychophysical studies on FM sweeps and language experiences------------------- 10
2 Research Aims------------------------------------------------------------------ 13
2-1 Research aims ----------------------------------------------------------------- 13
2-2 Overview of the experiments --------------------------------------------------- 13
3 General Method ---------------------------------------------------------------- 15
3-1 Mismatch negativity (MMN) ----------------------------------------------------- 15
3-1-1 Literature review ------------------------------------------------------------- 16
(1) MMN study on FM tones processing by impaired language speakers----------------- 16
(2) MMN study on FM sweeps processing --------------------------------------------- 16
3-2 EEG recording and analysis ---------------------------------------------------- 17
3-3 MMN difference waveform analysis ---------------------------------------------- 18
4 Experiment 1 :
FM sweeps direction detection by speakers of Mandarin Chinese: An MMN study------------ 20
4-1 Method ------------------------------------------------------------------------ 20
4-2 Results ----------------------------------------------------------------------- 22
4-3 Discussion -------------------------------------------------------------------- 23
5 Experiment 2 :
Direction detection on FM-tone sweeps complex by Chinese speakers --------------------- 24
5-1 Method ------------------------------------------------------------------------ 25
5-1-1 MMN experiment ---------------------------------------------------------------- 25
5-1-2 Behavior performance experiment ----------------------------------------------- 27
5-2 Results ----------------------------------------------------------------------- 28
5-2-1 MMN results ------------------------------------------------------------------- 28
5-2-2 Behavior results -------------------------------------------------------------- 29
(1) Performance correct ----------------------------------------------------------- 29
(2) Signal detection analysis ----------------------------------------------------- 29
5-3 Discussion -------------------------------------------------------------------- 30
5-3-1 MMN experiment ---------------------------------------------------------------- 30
5-3-2 Behavior experiment ----------------------------------------------------------- 31
6 Experiment 3
Auditory threshold tracking of FM-tone sweeps complex by native Mandarin Chinese and
English speakers ---------------------------------------------------------------------- 33
6-1 Method ------------------------------------------------------------------------ 33
6-2 Results ----------------------------------------------------------------------- 36
6-2-1 Detection threshold----------------------------------------------------------- 36
6-2-2 Goodness-of-fit exponential regression model --------------------------------- 37
6-2-3 Monte Carlo simulation ------------------------------------------------------- 37
6-3 Discussion -------------------------------------------------------------------- 38
7 General Discussion ------------------------------------------------------------ 40
7-1 Findings on FM sweeps direction detection ------------------------------------- 40
7-1-1 Effect on direction ----------------------------------------------------------- 40
7-1-2 Effect on frequency format ---------------------------------------------------- 41
7-1-3 Effect on language experiences ------------------------------------------------ 42
7-2 Limitations-------------------------------------------------------------------- 43
7-2-1 Duration and rate covaries in FM sweeps---------------------------------------- 43
7-2-2 Formant frequency bandwidth --------------------------------------------------- 43
7-2-3 Auditory sensitivity----------------------------------------------------------- 44
7-2-4 Possible existence of amplitude modulation at lower frequencies---------------- 44
7-3 Conclusion and future research ------------------------------------------------ 45
8 References -------------------------------------------------------------------- 46
9 Figures ----------------------------------------------------------------------- 57
參考文獻 Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8, 457-464.
Amenedo, E., & Escera, C. (2000) The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. European Journal of Neuroscience, 12, 2570-2574.
Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13, 252-260.
Belin, P., Zilbovicius, M., Crozier, S., Thivard, L., Fontaine, A., Masure, M. C., & Samson, Y. (1998). Lateralization of speech and auditory temporal processing. Journal of Cognitive Neuroscience, 10, 536-540.
Bent, T., Bradlow, A. R., & Wright, B. A. (2006). The influence of linguistic experience on the cognitive processing of pitch in speech and nonspeech sounds. Journal of Experimental Psychology: Human Perception & Performance, 32, 97-103.
Ceponiene, R., Kushnerenko, E., Fellman, V., Renlund, M., Suominen, K., & Näätänen, R. (2002).Event-related potential features indexing central auditory discrimination by newborns. Cognitive Brain Research, 13,101-113.
Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology, 47, 236-246.
Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Mismatch negativity to pitch contours is influenced by language experience. Brain Research, 1128, 148-156.
Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2009). Relative influence of musical and linguistic experience on early cortical processing of pitch contours. Brain and Language, 108, 1-9.
Cheng, C. C. (1973). A Quantitative Study of Chinese Tones. Journal of Chinese Linguistics,1, 93-110.
Chen, H. B., & Zeng, F. G. (2004). Frequency modulation detection in cochlear implant subjects. Journal of the Acoustical Society of America, 116, 2269-2277.
Dehaene-Lamberts, G. (2000). Celebral specialization for speeh and non-speech influences newborns’ perception of speech sounds. Journal of Cognitive Neuroscience.12,449-460.
Dankiewics, L. A., Helweg, D. A., Moore, P. W., & Zafran, J. M. (2002). Discrimination of amplitude-modulation synthetic echo trains by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 112, 1702-1708.
Delattre, P. C., Liberman, A. M., & Cooper, F. S. (1955). Acoustic loci and transitional cues for consonants. Journal of the Acoustical Society of America, 27, 769-773.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9-21.
Deutsh, D., Henthorn, T., Marvin, E., & Xu, H. (2006). Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related crtical period. Journal of the Acoustical Society of America, 119, 719-722.
Dimitrijevic, A., Sasha John, M., van Roon, P., & Picton, T. W. (2001). Human auditory steady-state responses to tones independently modulated in both frequency and amplitude. Ear and Hearing, 22, 100-111.
Divenyi, P. L. (2009). Perception of complete and incomplete fromant transition in vowels. Journal of the Acoustical Society of America, 27, 769-773.
Dorfman, D. D., & Alf, E. J. (1968). Maximum likelihood estimation of parameters of signal detection theory--- a direct soliction. Psychometrika, 33, 117-124.
Fiez, J., Raichle, M.E., Miezin, F.M., Petersen, S. E., Tallal, P., & Katz, W. F. (1995). Studies of auditory and phgonlogical processing : Effects of stimulus characteristics and task demands. Journal of Cognitive Neuroscience, 7, 357-375.
Freiederici, A. D., Meyer, M., & von Cramon, D. Y. (2000). Auditory language comprehension: An event-related fMRI study on the processing of syntactic and lexical information. Brain and Language, 74, 289-300.
Fuzessery, Z. M. (1994). Response selectivity for multiple dimension of frequency sweeps in the pallid bat inferior colliculus. Journal of Neurophysiology, 72, 1061-1079.
Fuzzessery, Z. M., Richardson, M. D., & Coburn, M. S. (2004). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweep in the inferior colliculuc of the pallid bat. Journal of Neurophysiology, 96, 1320-1336.
Gandour, J. (1983). Tone perception in Far Eastern languages. Journal of Phonetics, 11, 149-175.
Gandour, J. (2006). Tone: Neurophonetics. In K. Brown (Ed.), Encyclopedia of language & linguistics.Oxford, UK: Elsevier.
Gandour, J., & Harshman, R. (1978). Crosslanguage differences in tone perception: a multidimensional scaling investigation. Language and Speech, 21, 1-33.
Gandour, J.,Wong, D., & Hutchins, G. (1998). Pitch processing the human brain is influenced by language experience. Neuroreport, 9, 2115-2119.
Gandour, J., Wong, D., Lowe, M., Dzemidzic, M., Satthamnuwong, N., & Long, Y. X. (2002). Neural circuitry underlying perception of duration depends on language experience. Brain and Language, 83, 268-290.
Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 27, 627-640.
Giuliano, R. J., Pfordresher, P. Q., Stanley, E. M., Narayana, S., & Wicha, N. Y. (2011). Native experience with a tone language enhances pitch discrimination and the timing of neural responses to pitch change. Frontier Psychology, 2, doi: 10.3389/fpsyg.2011.00146
Goldstein, J. L. (1973). An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America,,54, 1496–1516.
Gordon, M., & O’Neill, W.E. (1998). Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity. Hearing Research, 122, 97-108.
Gordon, M.,& Poeppel, D. (2002). Inequality in identification of direction of frequency change (up vs. down) for rapid frequency modulated sweeps. Acoustics Research Letters Online, 3, 29-34.
Hari, R., Hämäläinen, M., Ilmoniemi,R., Kaukoranta,E., Reinikainen,K., & Salminen,J. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neuroscience Letter, 50, 127–132.
Heinemann, L.V., Rahm, B., Kaiser, J., Gaese, B.H.,, & Altmann, C.F. (2010). Repetition enhancement for frequency-modulated but not unmodulated sounds: A human MEG study. PLoS ONE 5, doi:10.1371/journal.pone.0015548.
Hirsh, I. J. (1959). Auditory perception of temporal order. Journal of the Acoustical Society of America, 31(6), 759-767.
Hove, M. J., Sutherland, M. E., & Krumhansl, C. L. (2010). Ethnicity effects in relative pitch. Psychonomic Bulletin and Review, 17, 310-316.
Howie, J. M. (1976). Acoustical Studies of Mandarin Vowels and Tones. Cambridge: Cambridge University Press.
Hsieh, I.H., Fillmore, P., Rong, F., Hickok, G., & Saberi, K. (2012). FM-selective networks in human auditory cortex revealed using fMRI and multivariate pattern classification. Journal of Cognitive Neuroscience, 24, 1896-1907.
Hsieh, I. H, & Saberi, K. (2009). Detection of spatial cues in linear and logarithmic frequency-modulated sweeps. Attention, Perception, & Psychophysics, 71, 1876-1889.
Hsieh, L., Gandour, J., Wong, D., & Hutchins, G. D. (2001). Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain and Langue, 76, 227-252.
Huber, F., & Thorson, J. (1985). Cricket auditory communication. Scientific American, 253, 60-68.
Huotilainen, M., Kujala, A., Hotakainen, M., Shestakova, A., Kushnerenkio, E., Parkkonen, L., Fellman, V., & Näätänen, R.(2003).Auditory magnetic responses of healthy newborns. Neuroreport, 14, 1871-1875.
Izumi, S., Itoch, K., Matsuzawa, H., Takahashi, S., Kwee, I. L., & Nakada, T. (2001). Functional asymmetry in primary auditory cortex for processing musical sounds: Temporal pattern analysis of fMRI time series. NeuroReport, 22, 470-474.
Johnsrude, I.S., Giraud, A.L., & Frackowiak, R.S. (2002). Functional imaging of the auditory system: the use of positron emission tomography. Audiology and Neuro-Otology, 7, 251–276.
Johnsrude, I. S., Zatorre, R. J., Milner, B. A., & Evans, A. C. (1997). Left-hemisphere specialization for the processing of acoustic transients. Cognitive Neuroscience and Neuropsychology, 8, 1761-1765.
Keating, P., & Kuo, G. (2010). Comparison of speaking fundamental frequency in English and Mandarin. UCLA Working Papers in Phonetics, 108, 164-187.
Kingom, F. A. A., & Prins, N. (2010). Psychophysics: a practical introduction. Amsterdam: Elsevier/ Academic Press.
Klein, D., Zatorre, R. J., Milner, B., & Zhao, V. (2001). A cross-linguistic PET study of tone perception in mandarin Chinese and English speakers. Neuroimage, 13, 646-653.
Kral, A., & Eggermont, J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Review, 56, 259-269.
Kraus, N., McGee, T., Sharma, A., Carrell, T., & Nicol, T. (1992). Mismatch negativity event-related potential elicited by speech stimuli. Ear and Hearing , 13, 158-164
Krishnan, A., & Parkinson, J. (2000). Human frequency-following response:
representation of tonal sweeps. Audiology and Neurotology, 5, 312 – 321.
Krishnan, A., Swaminathan, J., & Gandour, J. T. (2009). Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context. Journal of Cognitive Neuroscience, 21, 1092-1105.
Krishnan, A., Xu, Y. S., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25, 161-168.
Kurtzberg, D., Vaughan Jr., H.G., Kreuzer, J.A., Fliegler, K.Z., (1995). Developmental studies and clinical application of mismatch negativity: Problems and prospects. Ear and Hearing. 16, 105-117.
Leppänen, P.H.T., Pihko, E., Eklund, K.M., & Lyytinen, H.(1999). Cortical responses of infants with and without a genetic risk for dyslexia: II Group effects. Neuroreport, 10, 969–973.
Levitt, H.(1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49, 467-477.
Liberman, A. M., Delattre, P. C., Gerstman, L. J., & Cooper, F. S. (1956). Tempo of frequency change as a cue for distinguishing classes of speech sounds. Journal of Experimental Psychology, 52, 127-137.
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54, 358-368.
Liu, H. M., Tsao, F. M., & Kuhl, P. K. (2007). Acoustic analysis of lexical tone in Mandarin infant-directed speech. Developmental Psychology, 43, 912-917.
Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, Mass : MIT Press.
Luck, S. J. (2010). Is it legitimate to compare conditions with different numbers of trials? UC-Davis Center for Mind & Brain, 4.
Retrieved from http://erpinfo.org/Members/sjluck/Mean_Peak_Noise.pdf.
Luo, H., Boemio, A., Gordon, M., & Poeppel, D. (2007). The perception of FM sweeps by Chinese and English listeners. Hearing Research, 224, 75-83.
Luo, H., Wang, Y., Poeppel, D., & Simon, J.Z. (2006). Concurrent encoding of frequency and amplitude modulation in human auditory cortex: Encoding transition. Journal of Neurophysiology, 98, 3473-3485.
Mampe, B., Friederici, A. D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 1994-1997.
Matsumoto, R., Imamura, H., Inouchi, M., Nakagawa, T., Yokoyama, Y., Matsuhashi, M., et al. (2011). Left anterior temporal cortex actively engages in speech perception : A direct cortical stimulation study. Neuropsychologia, 49, 1350-1354.
Mendelson, J. R., & Cynader, M. S. (1985). Sensitivity of cat primary cortex (A1) neurons to the direction and rate of frequency modulation. Brain Research, 327, 331-335.
McCaslin, D. L., Feth, L. L., Jacobson, G. P., & Mishler, P. J. (2002). An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals. American Journal of Audiology, 11, 42-49.
Mendelson, J. R., Schreiner, C. E., Sutter, M. L., & Grasse, K. L. (1993). Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Experimental Brain Research, 94, 65-87.
Moore, B.C. (1997). An Introduction of Psychology of Hearing. London: Academic press.
Moore, B. C., & Glasberg, B. R. (1986). The role of frequency selectivity in the perception of loudness, pitch and time, In B. C. Moore (Ed.), Frequency Selectivity in Hearing (pp. 251-308). London: Academic Press.
Moore, B. C., & Sek, A. (1992). Detection of combined frequency and amplitude modulation. Journal of the Acoustical Society of America, 92, 3119-3131.
Morr, M.L., Shafer, V.L., Kreuzer, J.A., & Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23, 118– 136.
Näätänen R. (1979). Orienting and Evoked Potentials. In: H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp.61-75). New Jersey: Erlbaum.
Näätänen, R., Gaillard, A.W.K., & Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychology Sinica, 42, 313– 329.
Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R. J., Luuk, A., Allik, J., Sinkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nauture, 385, 432-495.
Näätänen, R. , & Michie, P.T. (1979). Early selective attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8, 81–136.
Näätänen, R., Paavilainen, P., Rinne, T.,& Alho, K. (2007). The mismatch negativity (MMN) in a basic research of central auditory processing : A review. Clinical Neurophysilogy,118, 2544-2590.
Nahum, M., Nelken, I., & Ahissar, M (2008). Low-Level Information and High-Level Perception: The Case of Speech in Noise . PLoS Biology ,6, doi:10.1371/journal.pbio.0060126.
Neonen, S., Shestakova, A., Huotilainen, M., & Näätänen, R. (2003). Linguistic relevance of duration within the native language determines the accuracy of speech-sound duration processing. Cognitive Brain Research, 16, 492-495.
Novitski, N., Huotilainen, M., Tervaniemi, M., Näätänen, R. & Fellman, V. (2007). Neonatal frequency discrimination in 250-4000Hz range : Electrophysiological evidence. Clinical neurophysiology, 118, 412-419.
Okada,M., & Kushino,M. (2003). The role of spectral change detectors in temporal order judgment of tones. Neuroreport, 14, 261-264.
Pfordresher, P.Q., & Brown, S. (2009). Enhanced production and perception of musical pitch in tone language speakers. Attention Perception and Psychophysics, 71, 1385-1398.
Picton, T. W., John, M. S., Dimitrijevic, A., & Purcell, D. (2003). Human auditory steady-state responses. International Journal of Audiology, 42, 177-219.
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as ‘asymmetric sampling in time’. Speech Communication, 41,245-255.
Poeppel, D., Guillemin, A., Thompson, J., Fritz, J., Bavelier, D., & Braun, A. R. (2004). Auditory lexical decision categorical perception and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia, 42, 183-200.
Pulvermuller, F., Shtyrov, Y., Ilmonienmi, R. J., & Marslen-Wilson, W. D. (2006). Tracking speech comprehension in space and time. Neuroimage, 31, 1297-1305.
Razak, K, A., Richardson, M. D., & Fuzessery, Z. M. (2008). Experience is required for the maintenance and refinement of FM sweep selectivity I the developing auditory cortex. PNAS, 105,4465-4470.
Rosenblith, W. A., & Stevens, K. N. (1953). On the DL for frequency. Journal of the Acoustical Society of America, 25, 980-985.
Sabourin, P., Gottlieb, h., & Pollack, G.S. (2008). Carrier-dependent temporal processing in an auditory interneuron. Journal of the Acoustical Society of America, 123, 2910-2917.
Sittiprapaporn, W., Chindaduangratn, C., Tervaniemi, M., & Khotchabhakdi, N. (2003). Preattentive processing of lexical tone perception by the huma brain as indexed by the mismatch negativity paradigm. Annual New York Academy of Science, 999, 199-203.
Shalgi, S., & Deouell, L. Y. (2007). Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia, 45), 1878-1888.
Sharma, M., & Dorman, M. F. (2000). Neurophysiological correlates of cross-language phonetic perception. Journal of the Acoustical Society of America, 107, 2697-2703.
Sharma, M., Purdy, S. C., Newall, P., Wheldall, K., Beaman, R., & Dillon, H. (2006). Electrophsiological and behavior evidence of auditory deficits in children with reading disorder. Clinical Neurophysiology, 117, 1130-1144.
Shen, X.S. (1990). The prosody of Mandarin Chinese. Berkely, Los Angeles and Oxford: University of California press.
Shore, S.E., Clopton, B.M., & Au, Y.N.(1987). Unit responses in ventral cochlear nucleus reflect cochlear coding of rapid frequency sweeps. Journal Acoustic Society of America, 82,471-478.
Shore, S. E., & Cullen, J. K. Jr. (1984). Cochlear microphonic responses of the peripheral auditory system to frequency-varying signals. American Journal of Otolaryngology, 5, 34-42.
Shore, S.E., & Nuttall, A.L. (1985). High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone burst. Journal Acoustic Society of America, 78, 1286-1295.
Song, J.H., Skoe, E,. Wong, P.C., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20, 1892–1902.
Stevens, S.S. (1957). On the psychophysical law. Psychological Review, 64, 153–181.
Stoodely, C. J., Hill, P. R., Stein, J. F., & Bishop, D. V. M. (2006). Auditory event-related potentials differ in dyslexics even when auditory psychophysical performance is noramal. Brain Research, 1121, 190-199.
Swaminathan, J., Krishnan, A., & Gandour, J. T. (2008). Pitch encoding in speech and nonspeech contexts in the human auditory brainstem. Neuroreport, 19, 1163-1167.
Swets, J. (1982). Recent theoretical developments in single-detection and recognition. Psychophysiology, 19, 300.
Talcott, J. B., Witton, C., McLean, M. F., Hansen, P. C., Rees, A., Green, G. G., & Stein, J. F. (2000). Dynamic sensory sensitivity and children’s word decoding skills. Proceedings of National Academy of Sciences, 97, 2952-2957.
Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9, 182-198.
Terhardt, E. (1974). Pitch, consonance, and harmony Journal of Acoustic Society of America, 55, 1061–1069.
Tervaniemi, M,. Alho, K. P. P, Sams, M., & Näätänen, R. (1993). Absolute pitch and event-related brain potentials. Music Perception, 10, 305-316.
Tervaniemi, M., Jacobsen, T., Röttger, S., Kujala, T., Widmann, A., Vainio, M., Näätänen, R., & Schröger, E. (2006). Selective tuning of cortical sound-feature processing by language experience. European Journal of Neuroscience, 23, 2538-2541.
Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372, 90-92.
Wetzel, W., Ohl, F.W., Wagner, T., & Scheich, H. (1998). Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neuroscience Letters, 252, 115–118.
Williams, A. J., & Fuzzessery, Z. M. (2010). Facilitatory mechanisms shape selectivity for the rate and direction of FM sweeps in the inferior colliculus of the pallid bat. Journal of Neurophysiology, 104, 1456-1471.
Winkler, I., Kushnerenko, E., Horvath, J., Ceponiene, R., Fellman, V., Huotilainen, M., Näätänen, R., & Sussman, E. (2003). Newborn infants can organize the auditory world. PNAS, 100, 11812-11815.
Wunderlich, J.L., & Cone Wesson, B.K. (2001) Effect of stimulus frequency and complexity on the mismatch negativity and the other components of the cortical auditory-evoked potential. Journal of Acoustic Society of America, 109, 1526–1537.
Xu, Y. (1994). Production and perception of coarticulated tones. Journal of the Acoustical Society of America, 95, 2240-2253.
Xu, Y. (1997). Contextual tonal variations in Mandarin. Journal of Phonetics, 25, 61-83.
Xu, Y., Gandour, J. T., & Francis, A. (2006). Effects of language experience and stimulus complexity on categorical perception of pitch detection. Journal of the Acoustical Society of America, 120, 1063-1074.
Yip, M. (2002). Tone. New York: Cambridge University Press.
Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946-953.
Zhang, L. I., Tan, A. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424, 201-205.
指導教授 謝宜蕙(I-hui Hsieh) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明