博碩士論文 992209002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.153.135.60
姓名 莊佳蓉(Chia-Jung Chuang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 Galaxy Cluster Dynamics and Modified Newtonian Dynamics
(Galaxy Cluster Dynamics and Modified Newtonian Dynamics)
相關論文
★ 宇宙射線在球形震波的加速★ 重力透鏡效應造成的類星體-星系關聯與星系-星系相關函數
★ 星際物質演化的研究★ 宇宙射線在恆星風的自相似解
★ 分子雲演化的二維模型★ 以2MASS近紅外資料研究太陽附近的疏散星團
★ 以二微米巡天觀測近紅外資料研究本銀河系結構★ 橢圓星系中基礎平面及等效半徑的多波段研究
★ 宇宙射線和磁流動力系統之不穩定性★ 初生星團的生存率
★ 橢圓星系外型與紅移關聯之研究★ 在不同均功參數下星團的擴散及核心的形成
★ 兩微米巡天數星所取得的銀河系資訊★ A numerical simulation survey on the outflow from the Galactic center
★ Strong Gravitational Lensing in Modified Newtonian Dynamics★ The destiny of a binary system under different mass loss scenarios
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在星系尺度或更大尺度的天體中,發現由觀測到的光度所推得的質量比由牛頓動力學量測到的質量要小。科學家們提出了不同的假設來解決這個問題。最為人熟知的是暗物質理論,暗物質理論描述在這些天體中存在一些物質,他們具有質量但我們無法經由光度觀測看到。另一個重要的理論為修正牛頓力學理論。理論上,如果我們可以得到天體的密度分布及重力位能,我們就可以來判定這兩個假說的正確性。
Wojtak 在 2011 年的文章中利用史隆數位巡天資料庫,綜合了 7800 個星系團的速度資料為一集合星系,且第一個利用這集合星系測量出星系團中的重力紅移。因為重力紅移可以直接得知星系團的位能,所以我們可以用此資訊來驗證這兩個假說。實際上,Wojtak 宣稱修正牛頓力學無法模擬他們的資料。然而很快的 Bekenstein 和 Sanders 在 2012 的文章中提出修正牛頓力學理論仍然可以模擬這些重力紅移的資料。
在這個研究中我們重新檢視這個問題。我們延長速度彌散分布的資料從1.2 到 3.5 百萬角秒差距並重新分析重力紅移的資料。我們假設了三個質量密度的分布(King, Hernquist 及 Eta3 模型)。也假設了三個修正牛頓力學的形式(Bekenstein, simple 及 standard 形式)。我們的結果與 Bekenstein 和 Sanders的提出的修正牛頓力學理論仍然可以模擬這些重力紅移的資料的結果相符。
然而在速度彌散分布的模擬結果中顯示,修正牛頓力學理論在加速度參數比在星系尺度下所量測到的參數小十倍下可以模擬這個集合星系團的速度彌散分布。我們認為修正牛頓力學理論可以模擬出這個集合星系的速度彌散分布及重力紅移,但加速度參數在星系團中與在星系中的不一致仍然無法解決。
摘要(英) In the framework of Newtonian dynamics, for astrophysical objects at scale of galaxy or larger the mass estimated from luminous matter is smaller than the mass estimated from motion. Scientists proposed different solutions to this so called "missing mass" problem. The most famous one is the dark matter paradigm, in which some matter exist in a form that it has mass but is invisible. A serious contender is Modified Newtonian Dynamics (MOND) which belongs to the modified gravity paradigm. Ideally, if both the density distribution and the gravitational potential can be probed separately, it is possible to distinguish the two paradigms definitively.
Using data from Sloan Digital Sky Survey (SDSS), cite{Wojtak201109} combined velocity measurements of galaxies of 7800 clusters of galaxies into an assembled cluster, and produced the first serious gravitational redshift measurement from a cluster of galaxies. Since gravitational redshift probes the potential directly, it helps to distinguish the two paradigms. In fact, cite{Wojtak201109} claimed that MOND could be ruled out by their data. This claim was quickly rebutted by cite{Bekenstein201203}, who maintained that MOND was in harmony with the gravitational redshift data.
We revisit this problem. We extend the velocity dispersion distribution of cite{Wojtak201109} from 1.2 Mpc to 3.5 Mpc, and also re-analysis the gravitational redshift data. We examine three one-component mass density profiles (King, Hernquist and Eta3 models) and three MOND interpolation functions (Bekenstein, simple and standard forms). Our result on gravitational redshift confirms the conclusion of cite{Bekenstein201203} that MOND is in harmony with the gravitational redshift data. In fact, there exists some degeneracy among model parameters when we fit the gravitational redshift data. However, our result on velocity dispersion distribution shows that although MOND can fit the data, the MOND acceleration parameter $a_0$ is about 10 times less than the one observed at the scale of galaxy. We conclude that MOND satisfies both velocity dispersion and gravitational redshift data of the assembled cluster, but the difference between the values of $a_0$ at cluster of galaxies scale and galactic scale is difficult to reconcile.
關鍵字(中) ★ 修正牛頓力學
★ 星系團
關鍵字(英) ★ MOND
★ Galaxy cluster
論文目次 Contents
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables x
1 Introduction 1
1.1 Clusters of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 CG Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Dark Matter in CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Gravitational redshift in CG . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Modified Newtonian Dynamic (MOND) . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 The interpolation function . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Application of MOND -- Galactic scale . . . . . . . . . . . . . . . . . 13
1.2.4 Application of MOND -- Clusters of galaxies . . . . . . . . . . . . . . 16
2 Data 19
2.1 Sample from Wojtak et al. (2011) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Extended analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Method 26
3.1 Velocity dispersion and Gravitational redshift . . . . . . . . . . . . . . . . . . 26
3.2 Density profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 King model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Hernquist model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Eta3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
iv4 Results 33
4.1 Estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Fitting procedure and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 King model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Hernquist model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Eta3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Summary and Discussion 53
參考文獻 Abell, G. O. 1958, ’The Distribution of Rich Clusters of Galaxies.’, ApJS, 3, 211
Aguirre, A., Schaye, J., & Quataert, E. 2001, ’Problems for Modified Newtonian Dynamics in
Clusters and the Lyα Forest?’, ApJ, 561, 550
Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ’Cosmological Parameters from Observations
of Galaxy Clusters’, ARAA, 49, 409
Arnaud, M. 2009, ’The β-model of the intracluster medium. Commentary on: Cavaliere A. and
Fusco-Femiano R., 1976, A&A, 49, 137’, A&A, 500, 103
Bagchi, J., Durret, F., Neto, G. B. L., & Paul, S. 2006, ’Giant Ringlike Radio Structures Around
Galaxy Cluster Abell 3376’, Science, 314, 791
Bahcall, N. A. 1977, ’Clusters of galaxies’, ARAA, 15, 505
Bautz, L. P. & Morgan, W. W. 1970, ’On the Classification of the Forms of Clusters of Galaxies’,
ApJL, 162, L149
Begeman, K. G., Broeils, A. H., & Sanders, R. H. 1991, ’Extended rotation curves of spiral
galaxies - Dark haloes and modified dynamics’, MNRAS, 249, 523
Bekenstein, J. & Milgrom, M. 1984, ’Does the missing mass problem signal the breakdown of
Newtonian gravity?’, ApJ, 286, 7
Bekenstein, J. D. & Sanders, R. H. 2012, ’TeVeS/MOND is in harmony with gravitational redshifts in galaxy clusters’, MNRAS, 421, L59
Bell, E. F. & de Jong, R. S. 2001, ’Stellar Mass-to-Light Ratios and the Tully-Fisher Relation’,
ApJ, 550, 212
Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition (Princeton University
Press)
Broadhurst, T. & Scannapieco, E. 2000, ’Detecting the Gravitational Redshift of Cluster Gas’,
ApJL, 533, L93
Cappi, A. 1995, ’Gravitational redshift in galaxy clusters.’, A&A, 301, 6
Carroll, B. W. & Ostlie, D. A. 2006, An introduction to modern astrophysics and cosmology
(Addison Wesley)
Cassano, R. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 407, The
Low-Frequency Radio Universe, ed. D. J. Saikia, D. A. Green, Y. Gupta, & T. Venturi, 223
Cavaliere, A. & Fusco-Femiano, R. 1976, ’X-rays from hot plasma in clusters of galaxies’, A&A,
49, 137
Cavaliere, A. G., Gursky, H., & Tucker, W. H. 1971, ’Extragalactic X-ray Sources and Associations of Galaxies’, Nature, 231, 437
Chiu, M.-C., Ko, C.-M., Tian, Y., & Zhao, H. 2011, ’Mass of galaxy lenses in modified gravity:
Any need for dark mass?’, PRD, 83, 063523
de Blok, W. J. G. & Bosma, A. 2002, ’High-resolution rotation curves of low surface brightness
galaxies’, A&A, 385, 816
Dehnen, W. 1993, ’A Family of Potential-Density Pairs for Spherical Galaxies and Bulges’,
MNRAS, 265, 250
Famaey, B. & McGaugh, S. S. 2012, ’Modified Newtonian Dynamics (MOND): Observational
Phenomenology and Relativistic Extensions’, Living Reviews in Relativity, 15, 10
Feretti, L. 2008, in The X-ray Universe 2008
Feretti, L., Fusco-Femiano, R., Giovannini, G., & Govoni, F. 2001, ’The giant radio halo in
Abell 2163’, A&A, 373, 106
Feretti, L. & Giovannini, G. 2008, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 740,
A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure, ed. M. Plionis,
O. López-Cruz, & D. Hughes, 143
Ferreira, P. G. & Starkman, G. D. 2009, ’Einstein’s Theory of Gravity and the Problem of Missing
Mass’, Science, 326, 812
Fouqué, P., Solanes, J. M., Sanchis, T., & Balkowski, C. 2001, ’Structure, mass and distance of
the Virgo cluster from a Tolman-Bondi model’, A&A, 375, 770
Gerbal, D., Durret, F., Lachieze-Rey, M., & Lima-Neto, G. 1992, ’Analysis of X-ray galaxy
clusters in the framework of modified Newtonian dynamics’, A&A, 262, 395
Hernquist, L. 1990, ’An analytical model for spherical galaxies and bulges’, ApJ, 356, 359
Kim, Y.-R. & Croft, R. A. C. 2004, ’Gravitational Redshifts in Simulated Galaxy Clusters’, ApJ,
607, 164
King, I. 1962, ’The structure of star clusters. I. an empirical density law’, AJ, 67, 471
King, I. R. 1972, ’Density Data and Emission Measure for a Model of the Coma Cluster’, ApJL,
174, L123
King, I. R. & Minkowski, R. 1966, ’Some Properties of Elliptical Galaxies’, ApJ, 143, 1002
Kravtsov, A. V. & Borgani, S. 2012, ’Formation of Galaxy Clusters’, ARAA, 50, 353
Longair, M. S. 2011, High Energy Astrophysics (Cambrigde)
McGaugh, S. S. 2005, ’The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation
Curves and the Stellar Mass of Rotating Galaxies’, ApJ, 632, 859
McGaugh, S. S. 2011, ’Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies’,
Physical Review Letters, 106, 121303
McGaugh, S. S., Rubin, V. C., & de Blok, W. J. G. 2001, ’High-Resolution Rotation Curves of
Low Surface Brightness Galaxies. I. Data’, AJ, 122, 2381
McGaugh, S. S., Schombert, J. M., Bothun, G. D., & de Blok, W. J. G. 2000, ’The Baryonic
Tully-Fisher Relation’, ApJL, 533, L99
Milgrom, M. 1983a, ’A modification of the Newtonian dynamics - Implications for galaxies’,
ApJ, 270, 371
Milgrom, M. 1983b, ’A Modification of the Newtonian Dynamics - Implications for Galaxy
Systems’, ApJ, 270, 384
Milgrom, M. 1983c, ’A modification of the Newtonian dynamics as a possible alternative to the
hidden mass hypothesis’, ApJ, 270, 365
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ’A Universal Density Profile from Hierarchical Clustering’, ApJ, 490, 493
Nottale, L. 1976, ’Redshift Anomaly in Associations of Clusters of Galaxies?’, ApJL, 208, L103
Nottale, L. 1983, ’Perturbation of the magnitude-redshift relation in an inhomogeneous relativistic model. III - Redshift effect intrinsic to clusters of galaxies’, A&A, 118, 85
Oemler, Jr., A. 1974, ’The Systematic Properties of Clusters of Galaxies. Photometry of 15
Clusters’, ApJ, 194, 1
Oort, J. H. 1932, ’The force exerted by the stellar system in the direction perpendicular to the
galactic plane and some related problems’, Bull. Astron. Inst., 6, 249
Oort, J. H. 1960, ’Note on the determination of Kz and on the mass density near the Sun.’, Bull.
Astron. Inst., 15, 45
Reyes, R., Mandelbaum, R., Gunn, J. E., et al. 2011, ’Optical-to-virial velocity ratios of local
disk galaxies from combined kinematics and galaxy-galaxy lensing’, ArXiv e-prints
Rines, K., Geller, M. J., Kurtz, M. J., & Diaferio, A. 2003, ’CAIRNS: The Cluster and Infall
Region Nearby Survey. I. Redshifts and Mass Profiles’, AJ, 126, 2152
Rood, H. J. 1981, ’Clusters of galaxies’, Reports on Progress in Physics, 44, 1077
Rood, H. J. & Struble, M. F. 1982, ’Test for a richness-dependent component in the systemic
redshifts of galaxy clusters’, ApJL, 252, L7
Rosati, P., Borgani, S., & Norman, C. 2002, ’The Evolution of X-ray Clusters of Galaxies’,
ARAA, 40, 539
Sanders, R. H. 1999, ’The Virial Discrepancy in Clusters of Galaxies in the Context of Modified
Newtonian Dynamics’, ApJL, 512, L23
Sanders, R. H. 2003, ’Clusters of galaxies with modified Newtonian dynamics’, MNRAS, 342,
901
Sanders, R. H. 2010, The Dark Matter Problem: A Historical Perspective (Cambrigde)
Sanders, R. H. & McGaugh, S. S. 2002, ’Modified Newtonian Dynamics as an Alternative to
Dark Matter’, ARAA, 40, 263
Sanders, R. H. & Verheijen, M. A. W. 1998, ’Rotation Curves of Ursa Major Galaxies in the
Context of Modified Newtonian Dynamics’, ApJ, 503, 97
Smith, S. 1936, ’The Mass of the Virgo Cluster’, ApJ, 83, 23
Steinmetz, M. & Navarro, J. F. 1999, ’The Cosmological Origin of the Tully-Fisher Relation’,
ApJ, 513, 555
Stiavelli, M. & Setti, G. 1993, ’Non-equilibrium motions in galaxies and gravitational redshift’,
MNRAS, 262, L51
Struble, M. F. & Rood, H. J. 1999, ’A Compilation of Redshifts and Velocity Dispersions for
ACO Clusters’, ApJS, 125, 35
The, L. S. & White, S. D. M. 1988, ’Modified Newtonian dynamics and the Coma cluster’, AJ,
95, 1642
Tremaine, S., Richstone, D. O., Byun, Y.-I., et al. 1994, ’A family of models for spherical stellar
systems’, AJ, 107, 634
Tully, R. B. & Fisher, J. R. 1977, ’A new method of determining distances to galaxies’, A&A,
54, 661
Venturi, T. 2011, ’Observational properties of diffuse radio sources in galaxy clusters . Current
knowledge and open questions’, Mem. S.A.It., 82, 499
Wegner, G. 2011, ’Cosmology: Gravity tested on large scales’, Nature, 477, 541
White, D. A., Jones, C., & Forman, W. 1997, ’An investigation of cooling flows and general
cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies’,
MNRAS, 292, 419
White, S. D. M. 1977, ’Mass segregation and missing mass in the Coma cluster’, MNRAS, 179,
33
Wojtak, R., Hansen, S. H., & Hjorth, J. 2011, ’Gravitational redshift of galaxies in clusters as
predicted by general relativity’, Nature, 477, 567
Wu, X. & Tremaine, S. 2006, ’Deriving the Mass Distribution of M87 from Globular Clusters’,
ApJ, 643, 210
Zwicky, F. 1933, ’Die Rotverschiebung von extragalaktischen Nebeln’, Helvetica Physica Acta,
6, 110
Zwicky, F. 1937, ’On the Masses of Nebulae and of Clusters of Nebulae’, ApJ, 86, 217
Zwicky, F. & Kowal, C. T. 1968, ’’Catalogue of Galaxies and of Clusters of Galaxies’’, Volume
VI
指導教授 高仲明 審核日期 2013-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明