博碩士論文 992210004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.219.31.204
姓名 蕭義霖(YI-LIN HSIAO)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(Granular Dynamics in Uniform and Non-Uniform Potential Fields)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論★ 彈性懸掛棍在旋轉系統下之行為
★ 膠體球在電解質溶液中的擴散泳★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析
★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function★ 剛體球在不對稱垂直震盪系統中的動力學行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在我們的實驗中,研究在垂直震盪系統中單一顆粒體的布朗運動(Brownian Motion)。在有規則粗糙的底板上給予不同的震盪條件,顆粒體的速度分佈會符合高斯分佈(Gaussian distribution)且會均勻分散在整個環形範圍內(360 度)。我們選擇單一顆粒體和鐵棒做為實驗對象。捨棄了顆粒體之間的交互作用,才能更明確的研究位能場對於布朗運動的影響。
在對稱的位能場中,鋼體球的分佈密度和位能場關係是符合馬克士威-波茲曼統計(Maxwell-Boltzmann statistics)。如果考慮熱力學系統,位能場是相對於磁場,而有效溫度是相對於速度平方。結論一樣會符合馬克士威-波茲曼統計。其次,脫離位能井的行為也一併被記錄下來。其脫離位能井的時間在克拉瑪脫離理論(Kramer Escape Theory)下跟有效溫度是相關的。我們還針對鋼體球攀爬位能井的行為做討論。再來,我們把鋼體球放入不對稱的位能場中,剛體球的分佈密度和位能場的關係一樣是符合馬克士威-波茲曼統計。在鋼體球攀爬位能井的觀察中,我們分別記錄了在攀爬不同梯度的位能壁其所需要的時間,和定量的時間下成功攀爬上去的次數。最後,我們使用了圓柱形的實驗顆粒來做跟位能場有關的實驗。圓柱相對於磁場的位置和其旋轉的位置將被記錄下來,並且描述其運動行為。
摘要(英) Brownian motion which is excited by the vertical vibration is studied with a single particle in our experiment. The particle’s probability velocity distributions match the Gaussian distribution and the position distribution is homogeneous with different vibration condition in the annular container on a regular rough bottom. We setup a single hard sphere and iron bar to do the experiment. Without interaction between the particles, the effect of the potential field in Brownian motion is observed directly.
In a symmetric potential field, we find that the hard sphere’s density and the magnetic field are correlated with the Maxwell-Boltzmann statistics. Following the thermodynamics, the potential energy E is related to the intensity of magnetic field B and the effective temperature kT is related to the average velocity . The Maxwell-Boltzmann statistics is also used in this discussion. Second, we record the escape behavior in the potential well. The escape time T is related to the effective temperature kT under the Kramer escape theory. We also try to find the relation between the climbing behavior and potential field. Next, we put the single hard sphere in an asymmetric potential field. The sphere’s behavior is also correlated with the Maxwell-Boltzmann statistics. With climbing the asymmetric potential field, we record the time and quantity that the sphere climbs the asymmetric potential well that the distance is defined by the location or the magnetic field. Finally, the cylinder is used to do the experiment with potential field. The relation between position and orientation is recorded and the real motion behavior is described.
關鍵字(中) ★ 顆粒體動力學
★ 不對稱位能場
★ 垂直震盪
★ 複雜系統
關鍵字(英) ★ Granular dynamics
★ asymmetric potential field
★ vertical vibrate
★ complex system
論文目次 1 Introduction 1
1.1 Maxwell-Boltzmann Statistics . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Kramer Escape Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Apparatus and Methods 5
2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Vibrate contain . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Magnetic eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Measure of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 General Brownian Motion . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 E ect of Magnetic Field - Sphere . . . . . . . . . . . . . . . . . 12
2.2.3 Rod Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Results and Discussions 18
3.1 Single Sphere in the Symmetric Potential Field . . . . . . . . . . . . . . 18
3.2 Single Sphere in the Asymmetric Potential Field . . . . . . . . . . . . . 28
3.3 The Rod in the Symmetric Potential Field . . . . . . . . . . . . . . . . 34
4 Conclusion 38
Bibliography 40
參考文獻 [1] P. M. Reis,* R. A. Ingale, and M. D. Shattucky, Phys Rev E 75, 051331 (2007).
[2] Wennan Chen and Kiwing To, Phys Rev E 80, 061305 (2009)
[3] Michael A. Scherer, Volkhard Buchholtz, Thorsten Poschel, Ingo Rehberg,
Phys Rev E 54, NUMBER 5, (1996)
[4] S. Auma^tre, C. A. Kruelle, and I. Rehberg, Phys Rev E 64, 041305 (2001)
[5] A. Feltrup, K. Huang, C. A. Krulle, and I. Rehberg, Eur: Phys: J: Special Topics
179, 19-24 (2009)
[6] K. Kohlstedt, A. Snezhko, M. V. Sapozhnikov, I. S. Aranson, J. S. Olafsen, and E.
Ben-Haim, Phys Rev Lett 95, 068001 (2005)
[7] Malte Schmick and Mario Markus* Phys Rev E 78, 010302(R) (2008)
[8] J. Atwell and J. S. Olafsen*, Phys Rev E 71, 062301 (2005)
[9] T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1988)
[10] James F. Lutsko, Phys Rev E 73, 021302 (2006)
[11] Arshad Kudrolli, Rep: Prog: Phys: 67, 209-247 (2004)
[12] Claudius Gros, Complex Adaptive Dynamical Systems; a Primer (2008)
[13] Yu-Jane Sheng, Shaoyi Jiang, and Heng-Kwong Tsao, J: Chem: Phys: 123, 091102
(2005)
指導教授 陳培亮(PEI-LONG CHEN) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明