博碩士論文 992210005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.251.81
姓名 宓筠婕(Yun-chieh Mi)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
(Suppression of alternan response in an isolated heart by a nonlinear control method and the mechanical and temperature effect on cardiac interbeat interval)
相關論文
★ The Rheological Properties of Invasive Cancer Cells★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當心臟出現心跳強弱交替的現象(cardiac alternans)會導致心臟中電訊號的傳導阻礙(conduction block)而導致心律不整,傳統上是利用成比例放大的控制方法來控制這種現象。在此篇論文中我們提出一種非線性控制方法來抑制離體心臟中心跳強弱交替的現象。在這個方法中,我們利用兩種電刺激的週期來取代原本固定的刺激週期(T0);這兩種週期分別為T1 = T0+ΔT/2與T2 = T0-ΔT/2,而當中ΔT是在週期T0中加入的微擾。我們利用相鄰兩次心跳的壓力差(Pn、Pn+1)判定電刺激週期為T1或是T2;當Pn > Pn+1時則使用T1為電刺激週期,反之則使用T2。我們的結果顯示,這種T1T2的控制方法可以成功地抑制在離體心臟中心跳強弱交替的現象。
此篇論文另外一個實驗是關於心律變異性的研究(heart rate variability, HRV)。心律的變異性在離體心臟中是來自於位於右心房的竇房結(SA node),而心臟細胞培養系統可以用來模擬竇房結。我們利用兩種方式來瞭解心律變異性的機制,第一種方法是利用藥物來減少離體心臟收縮的力,而我們的結果顯示當心臟收縮的力變小時則心律變快且心律變異性變小;此外,我們比較利用加藥與升溫兩種方式所造成心律變異性的變化,發現利用藥物改變心臟收縮的力的方式的效果比升溫較為顯著。第二種方式是利用改變在心臟細胞的溫度來觀察心律變異性的變化,而實驗結果顯示,當溫度越高時心律會加快,而心律變異性變小。
摘要(英) Alternan responses in heart can cause conduction blocks and lead to fatal conditions such as ventricular fibrillation (VF). It would be important to know how to suppress the alternan response in hearts. In this thesis, we report a nonlinear control method to suppress the alternan responses in isolated heart experiments. In this method, the pacing period T0 is replaced by two periods; namely T1 = T0+ΔT/2 and T2 = T0-ΔT/2 where ΔT =T1-T2 is a small perturbation of the original period T0. Measured pressures of the isolated heart from the previous beat (Pn-1) and the current beat (Pn) are used to determine whether T1 or T2 should be used. In our control scheme, T1 is used when Pn > Pn-1 ; otherwise T2 is used. This method is different from the traditional proportional gain method. Results from experiments show that this T1T2 method can successfully suppress alternan response from isolated hearts.
Another experiment in this thesis is to understand the variability of the interbeat interval which is controlled by SA node in an isolated whole heart. Primary cardiac co-cultures are also used to model the SA node in the heart. To understand the mechanism of the heart rate variability, we add a drug to suppress the contraction of the isolated whole heart, and also control the temperature of the cardiac cultures to see the effects of mechanical and temperature. The result shows that when we reduce the contraction of the isolated whole heart, the heart rate increases and the heart rate variability decreases. However, the decrement of heart rate variability is larger than the temperature effect on the isolated whole heart. For the experiment of temperature effect in cell cultures, the heart rate increases and the heart rate variability decreases when we increase the temperature.
關鍵字(中) ★ 心律變異性
★ 交替脈
關鍵字(英) ★ heart rate variability
★ cardiac alternans
論文目次 ABSTRACT i
摘要 ii
致謝 iii
Acronym: iv
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Cardiac system 2
1.2.1 The function and structure of the heart 2
1.2.2 Conduction system of hearts 3
1.2.3 The cells in heart 5
1.2.4 The physiology of the cells in cardiac system 6
1.3 Introductions of the cardiac alternans and the HRV 9
1.3.1 Cardiac alternans 9
1.3.2 Heart rate variability 12
1.4 Motivation 13
1.4.1 Suppression of cardiac alternans by feedback control 13
1.4.2 The effect of temperature 15
1.4.3 The mechanical effect on the heart rate variability 16
1.5 Purpose 17
Chapter 2 Method and Experimental setup 18
2.1 Overview 18
2.2 Isolated whole heart 19
2.2.1 Langendorff system 19
2.2.2 Measurement and stimulation system 21
2.2.3 Protocols for experiments 24
2.3 Cell culture 26
2.3.1 Microelectrode array (MEA) system 26
2.3.2 Sample preparation and experimental protocol 28
2.4 Analysis 29
2.4.1 Suppression of alternans 29
2.4.2 The variability of Inter-beat interval (ΔIBI) 29
2.4.3 Q10 temperature coefficient 30
Chapter 3 Result 31
3.1 Overview 31
3.2 Suppression of cardiac alternans in an isolated whole heart 32
3.2.1 Suppression of cardiac alternans 32
3.2.2 Poincare maps 36
3.2.3 Dynamics of pacing interval 38
3.3 Heart rate variability in an isolated whole heart 40
3.3.1 Mechanical effect on heat rate variability 40
3.3.2 Comparison of mechanical and temperature effect 42
3.4 Heart rate variability in cell cultures 43
3.4.1 Temperature effect on cell cultures 43
3.4.2 BDM effect on cell cultures 45
3.4.3 Q10 temperature coefficient 46
Chapter 4 Conclusion and Discussion 47
4.1 Overview 47
4.2 Suppression of cardiac alternans in an isolated whole heart 47
4.3 Heart rate variability in an isolated whole heart 49
4.4 Heart rate variability in cell culture 50
Chapter 5 Appendix 51
Chapter 6 References 65
參考文獻 [1] http://www.phaaustralia.com.au/content/what-pulmonary-hypertension-0
[2] Iaizzo, P. A. Handbook of Cardiac Anatomy, Physiology, and Devices." (2005).
[3] http://cal.vet.upenn.edu/projects/anestecg/basics/condsys.htm
[4] Fahrenbach, J. P., R. Mejia-Alvarez, et al. (2007). "The relevance of non-excitable cells for cardiac pacemaker function." Journal of Physiology-London 585(2): 565-578.
[5] Davies, M. J. and Pomeranc. A. (1972). "QUANTITATIVE STUDY OF AGING CHANGES IN HUMAN SINOATRIAL NODE AND INTERNODAL TRACTS." British Heart Journal 34(2): 150-2.
[6] Camelliti, P., T. K. Borg, et al. (2005). "Structural and functional characterisation of cardiac fibroblasts." Cardiovascular Research 65(1): 40-51.
[7] Shih, H. T. (1994). "ANATOMY OF THE ACTION-POTENTIAL IN THE HEART." Texas Heart Institute Journal 21(1): 30-41.
[8] Bruce M. Koeppen, B. A. S. (2009). Berne & Levy Physiology.
[9] Bers, D. M. (2002). "Cardiac excitation-contraction coupling." Nature 415(6868): 198-205.
[10] Qu, Z. L., A. Garfinkel, et al. (2011). "Multi-scale modeling in biology: How to bridge the gaps between scales?" Progress in Biophysics & Molecular Biology 107(1): 21-31.
[11] Qu, Z., Y. Xie, et al. (2010). "T-wave alternans and arrhythmogenesis in cardiac diseases." Front Physiol 1: 154.
[12] Hirth, C., U. Borchard, et al. (1983). "EFFECTS OF THE CALCIUM-ANTAGONIST DILTIAZEM ON ACTION-POTENTIALS, SLOW RESPONSE AND FORCE OF CONTRACTION IN DIFFERENT CARDIAC TISSUES." Journal of Molecular and Cellular Cardiology 15(12): 799-809.
[13] Acharya, U. R., K. P. Joseph, et al. (2006). "Heart rate variability: a review." Medical & Biological Engineering & Computing 44(12): 1031-1051.
[14] Goldberger, A. L., L. A. N. Amaral, et al. (2002). "Fractal dynamics in physiology: Alterations with disease and aging." Proceedings of the National Academy of Sciences of the United States of America 99: 2466-2472.
[15] Christini, D. J. and J. J. Collins (1997). "Real-time, adaptive, model-independent control of low-dimensional chaotic and nonchaotic dynamical systems." Ieee Transactions on Circuits and Systems I-Fundamental Theory and Applications 44(10): 1027-1030.
[16] Jordan, P. N. and D. J. Christini (2004). "Adaptive diastolic interval control of cardiac action potential duration alternans." Journal of Cardiovascular Electrophysiology 15(10): 1177-1185.
[17] Christini, D. J., M. L. Riccio, et al. (2006). "Control of electrical alternans in canine cardiac purkinje fibers." Physical Review Letters 96(10).
[18] Dubljevic, S., S. F. Lin, et al. (2008). "Studies on feedback control of cardiac alternans." Computers & Chemical Engineering 32(9): 2086-2098.
[19] Hsiao-Wen Tu (2010). The effect of themerature and calcium dynamics on cardiac interbeat intervals, master’s thesis, Graduate institute of biophysics National Central University, Jung-Li.
[20] Fedorov, V. V., L. Li, et al. (2005). "Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: Possible rote of Cx43 and Cx45 up-regulation." Heart Rhythm 2(9): 966-975.
[21] Hiranandani, N., K. D. Varian, et al. (2006). "Frequency-dependent contractile response of isolated cardiac trabeculae under hypo-, normo-, and hyperthermic conditions." Journal of Applied Physiology 100(5): 1727-1732.
[22] Casolo, G., E. Balli, et al. (1989). "DECREASED SPONTANEOUS HEART-RATE VARIABILITY IN CONGESTIVE HEART-FAILURE." American Journal of Cardiology 64(18): 1162-1167.
[23] Horner, S. M., C. F. Murphy, et al. (1996). "Contribution to heart rate variability by mechanoelectric feedback - Stretch of the sinoatrial node reduces heart rate variability." Circulation 94(7): 1762-1767.
[24] http://www.cvphysiology.com/Blood%20Flow/BF001.htm
[25] Multichannel systems. (2011). MEA Amplifier with Blanking Circuit for Inverse Microscopes.
指導教授 陳志強、黎璧賢
(C.K. Chan、Pik-Yin Lai)
審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明