博碩士論文 992212004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.153.135.60
姓名 吳勇蒼(Yung-tsang Wu)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 分離式二氧化鈦奈米管在染料敏化太陽能電池之運用
(Fabrication of Separated TiO2 Nanotubes and Application of Dye-Sensitized Solar Cell)
相關論文
★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究
★ 膜堆光學導納量測儀★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究
★ 有機高分子電化學發光元件★ 開孔電極結構對於垂直式有機電晶體電性影響之研究
★ 以奈米壓印改善陽極氧化鋁週期性★ 含氫矽薄膜太陽電池材料之光電特性研究
★ 自我複製結構膜光學性質之研究★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究★ 以奈米小球提升矽薄膜太陽能電池吸收之研究
★ 定光電流量測法在氫化矽薄膜特性的研究★ 動態干涉儀量測薄膜之光學常數
★ 反應式濺鍍過渡態矽薄膜之研究★ 光子晶體偏振分光鏡之設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2019-7-30以後開放)
摘要(中) 現今主流的染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)工作電極為奈米顆粒(TiO2 nanoparticles, TNP),但由於奈米顆粒的介面使電子具非單一路徑傳輸並且增加其復合機率。故本研究以陽極氧化鋁(Anodic Aluminum Oxide, AAO)方式製作出奈米孔洞模板,再利用原子層沉積(Atomic Layer Deposition, ALD)技術、高密度電漿蝕刻(High Density Plasma Etch, HDP)及化學濕蝕刻方式製作分離式二氧化鈦奈米管(TiO2 nanotubes, TNT),作為染料敏化太陽能電池的工作電極,使電子具單一性方向傳遞並減少介面間缺陷的復合機率,提升光電轉換效率(Power Conversion Efficiency, PCE)。
而以二次陽極氧化鋁方式可製作出規則性及周期性較好且真圓度大於0.8的奈米管,且在不同基板可製作出不同晶相之二氧化鈦奈米管,最後再浸泡六甲基二矽氮烷(Hexmethyldisilane, HMDS)處理,可使分離式二氧化鈦奈米管在乾燥的過程中不會因內聚力倒塌並形成區塊的破碎。本研究製作的分離式二氧化鈦奈米管管壁厚度為20 nm,平均週期為93.5 nm ~ 202.5 nm,管長300 nm ~ 5.1 μm。而光電轉換效率高於奈米顆粒工作電極,可達1.432%。
摘要(英) TiO2 nanoparticle (TNP) is one of the most popular materials to be the working electrode for dye-sensitized solar cells (DSSCs). However, the carriers are recombined frequently when they propagate to the interface of the TNP. In other word, this is one of the significant issues to decrease the power conversion efficiency (PCE) of a DSSC. In this study, we proposed a TiO2 nanotubes (TNT) as the working electrode for the DSSC. The TNT was fabricated by using atomic layer deposition (ALD) technique on an anodic aluminum oxide (AAO) template. Then we used high density plasma (HDP) etching and wet etching to remove the AAO template. The TNT can help the carriers to propagate in a single-path which can decrease the carrier recombination.
We fabricated the TNTs with better regularity and circularity more than 0.8 by using 2-step AAO method. And the TNTs were fabricated with different crystalline structures on the different substrates. Then, we immersed the TNTs in Hexmethyldisilane (HMDS) to prevent the TNTs to be broken by cohesion. In our research, the thickness of the TNT is 20 nm when period is in the range from 93.5 nm to 202.5 nm. The length of TNT was varied from 300 nm to 5.1 μm. Finally, we demonstrate a DSSC with TNT electrode is better than the DSSC with TNP electrode in PCE is 1.432%.
關鍵字(中) ★ 染料敏化太陽能電池
★ 奈米管
★ 二氧化鈦
★ 陽極氧化鋁
★ 原子層沉積
關鍵字(英) ★ dye-sensitized solar cell (DSSC)
★ nanotube
★ TiO2
★ anodic aluminum oxide (AAO)
★ atomic layer deposition (ALD)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viiii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 本文架構 6
第二章 基礎理論 7
2-1 染料敏化太陽能電池 7
2-1-1 染料敏化太陽能電池文獻回顧 7
2-1-2 染料敏化太陽能電池結構 8
2-1-3 染料敏化太陽能電池工作原理 11
2-2 二氧化鈦 13
2-3 陽極氧化鋁 15
2-3-1 陽極氧化鋁文獻回顧 15
2-3-2 陽極氧化反應 19
2-3-3 陽極氧化鋁成形原理 20
2-3-4 陽極氧化鋁成形之化學反應 21
第三章 實驗儀器與量測設備 23
3-1 實驗儀器 23
3-1-1 AAO治具 23
3-1-2 磁控濺鍍機 24
3-1-3 原子層沉積 26
3-1-4 高密度電漿蝕刻系統 29
3-2 量測儀器 30
3-2-1 拉曼光譜儀 30
3-2-2 掃描式電子顯微鏡 32
3-2-3 光電轉換效率量測系統 33
第四章 分離式二氧化鈦奈米管製作與分析 34
4-1 分離式二氧化鈦奈米管製程流程 34
4-1-1 基板清洗 35
4-1-2 濺鍍TiO2/Al膜 35
4-1-3 陽極處裡 36
4-1-4 二氧化鈦薄膜 36
4-1-5 乾蝕刻 36
4-1-6 退火 37
4-1-7 化學蝕刻 37
4-1-8 HMDS處理 37
4-2 實驗結果與討論 38
4-2-1 一次陽極氧化與二次陽極氧化 38
4-2-2 不同電壓製程 40
4-2-3 不同長度之二氧化鈦奈米管 44
4-2-4 不同基板製程 48
第五章 染料敏化太陽能電池製作與分析 53
5-1 染料敏化太陽能電池製作流程 53
5-2 不同週期之二氧化鈦奈米管分析 54
5-3 不同長度之二氧化鈦奈米管分析 57
5-4 二氧化鈦奈米顆粒於染敏電池製作與分析 59
5-5 分離式奈米管與奈米顆粒之比較 62
第六章 結論與未來工作 66
6-1 結論 66
6-2 未來工作 67
參考文獻 68

參考文獻 [1] L. L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden, CO (2013).
[2] S. Gubbala, V. Chakrapani, V. Kumar, and M. K. Sunkara, "Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires," Advanced Functional Materials, 18, 2411-2418, (2008).
[3] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, and S. Yanagida, "Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes," Journal of Materials Chemistry, 12, 723-728, (2002).
[4] T. Sugimoto, X. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method," Journal of Colloid and Interface Science, 259, 53-61, (2003).
[5] Y. Lin, J. Lin, P. Liu, Mohammed J. Meziani, Lawrence F. Allard, and Y. P. Sun, "Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension," Journal of the American Chemical Society, 124, 11514-11518, (2002).
[6] D. Xu, Z. Miao, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, "Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires," Nano Letters, 2, 717-720, (2002).
[7] G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie and L. D. Zhang, "Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes," Journal of physics: Condensed Matter, 15, 2917-2922, (2003).
[8] G. H. Li, Y. X. Zhang, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, "Hydrothermal synthesis and photoluminescence of TiO2 nanowires," Chemical Physics Letters, 365, 300-304, (2002).
[9] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, et al., "Field-emission properties of TiO2 nanowire arrays," Journal of Physics D: Applied Physics, 38, 1152-1155, (2005).
[10] Eray S. Aydil, B. Liu, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cell," Journal of the American Chemical Society, 131, 3985-3990, (2009).
[11] X. Q. Gu, Y. L. Zhao, and Y. H. Qiang, "Influence of annealing temperature on performance of dye-sensitized TiO2 nanorod solar cells," Journal of Materials Science: Materials in Electronics, 23, 1373-1377, (2011).
[12] A. Kornowski, P. Davide Cozzoli, and H. Weller, "Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods," Journal of the American Chemical Society, 125, 14539-14548, (2003).
[13] J. J. Wu, C. C. Yu, "Aligned TiO2 Nanorods and Nanowalls," The journal of physical chemistry. B 108, 3377-3379, (2004).
[14] H. W. Chung, C. C. Chen, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, and W. G. Diau, "Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, 112, 19151-19157, (2008).
[15] M. Hiramatsu, T. Kasuga, A. Hoson, T. Sekino, and K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163, (1998).
[16] L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, "Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications," ACS Appl Mater Interfaces, 2, 498-503, Feb (2010).
[17] D. Gong, O. K. Varghese, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes, "Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure," Advanced materials, 15, 624-627, (2003).
[18] C. Jeon, S. Lee, and Y. Park, "Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor," Chemistry of materials, 16, 4292-4295, (2004).
[19] J. M. Wu, H. C. Shih, and W. T. Wu, "Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation," Chemical Physics Letters, 413, 490-494, (2005).
[20] F. Müller, A. P. Li, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina," Applied Physics, 84, 6023-6026, (1998).
[21] L. Z. Feiyue. Li, and Robert M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater., 10, 2470-2480, (1998).
[22] G. E. Thompson, "Porous anodic alumina fabrication, characterization and applications," Thin Solid Films, 297, 192-201, (1997).
[23] E. Putzeiko, A. Terenin, and I. Akimov, "Energy transfer in systems of connected organic molecules," Discuss. Faraday Soc., 27, 83-93, (1959).
[24] M. Matsumura, H. Tsubomura, Y. Nomura, T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, 261, 402-403, (1976).
[25] B. O′Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, 353, 737-740, (1991).
[26] A. Kay, M. K. Nazeeruddin, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, "Conversion of Light to Electricity by cis-X2Bis 2,2′-bipyridyl-4,4′-dicarboxylate)rutheniumⅡ Charge- Transfer Sensitizers(X=C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," J. Am. Chem. Soc., 115, 6382-6390, (1993).
[27] D. L. U. Bach, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, 395, 583-585, (1998).
[28] P. Nazeeruddin, K. Mohammad, R. Thierry, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," J. Am. Chem. Soc., 123, 1613-1624, (2001).
[29] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 499, 316-319, Jul 18 (2013).
[30] L. M. Peter, "The Grätzel Cell: Where Next?," The Journal of Physical Chemistry Letters, 2, 1861-1867, (2011).
[31] M. Grätzel, "Photoelectrochemical cells," Nature, 414, 338-344, (2001).
[32] M. A. Jalebi, A. K. Chandiran, Mohammad K. Nazeeruddin, and M. Grätzel, "Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells," ACS Nano, 8, 2261-2268, (2014).
[33] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44, 6841-6851, (2005).
[34] G. J. Meyer, "Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers," J. Chem. Educ., 74, 652-656, (1997).
[35] S. F. Arie Zaban, and Brian A. Gregg, "Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface," J. Phys. Chem. B, 102, 452-460, (1998).
[36] J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, "Importance of the relationship between surface phases and photocatalytic activity of TiO2," Angew Chem Int Ed Engl, 47, 1766-1769, (2008).
[37] W. Su, Z. Feng, T. Chen, P. Ying, and C. Li, "Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy," J. phys. Chem. C, 112, 7710-7716, (2008).
[38] A. Primo, A. Corma, and H. Garcia, "Titania supported gold nanoparticles as photocatalyst," Phys Chem Chem Phys, 13, 886-910, Jan 21 (2011).
[39] U. Diebold, "The surface science of titanium dioxide," surface science reports, 48, 53-229, (2003).
[40] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, "Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser," Applied Surface Science, 253, 7497-7500, (2007).
[41] M. S. Hunter, F. Keller, and D. L. Robinson, "Structural Features of Oxide Coatings on Aluminum," Journal of the Electrochemical Society, 100, 411-419, (1953).
[42] H. Herman, J. C. Scully, "Corrosion: aqueous processes and passive films," Treatise on materials science and technology New York: Academic Press, 1, (1983).
[43] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," j. Phys. D: Appl. Phys., 25, 1258-1263, (1992).
[44] F. M. O. Jessensky, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics, 72, 1173-1175, (1998).
[45] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao, and X. W. Du, "Effects of anodizing conditions on anodic alumina structure," Journal of Materials Science, 42, 3878-3882, (2007).
[46] J. P. O′Sullivan and G. C. Wood, "The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium," Proc. R .Soc. Lond. A, 317, 511-543, (1970).
[47] 許捷翔, "利用陽極氧化鋁薄膜在矽太陽能電池表面製作抗反射奈米結構," 碩士論文, 國立中央大學光電科學與工程學系, (民101年6月).
[48] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, 12, 240-251, Mar (2002).
[49] 李正中, "薄膜光學與鍍膜技術," 藝軒圖書出版社, 第六版, (2012).
[50] F. P. Brian A. Gregg, S. Ferrere, and C. L. Fields, "Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces," J. Phys. Chem. B, 105, 1422-1429, (2001).
[51] G. Schlichthörl, S. Y. Huang, A. J. Nozik, M. Grätzel, and A. J. Frank, "Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells," J. Phys. Chem. B, 101, 2576-2582, (1997).
[52] P. J. Cameron and L. M. Peter, "How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?," J. Phys. Chem. B, 109, 7392-7398, (2005).
[53] 林健均, "二氧化鈦緻密層對染料敏化太陽能電池特性之影響," 碩士論文, 國立中央大學物理研究所, (民97年6月).
[54] X. Gao, J. Chen, and C. Yuan, "Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness," Journal of Power Sources, 240, 503-509, (2013).
[55] Y. P. Zhao and J. G. Fan, "Clusters of bundled nanorods in nanocarpet effect," Applied Physics Letters, 88, 103123, (2006).
[56] 陳君閣, "以陽極處裡法製備奈米孔洞陣列光電元件," 博士論文, 國立中央大學光電科學與工程學系, (民102).
[57] S. Nakao, N. Yamada, T. Hitosugi, Y. Hirose, T. Shimada, and T. Hasegawa, "Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition," Thin Solid Films, 518, 3093-3096, (2010).

指導教授 陳昇暉、張瑞芬(Sheng-hui Chen Jui-fen Chang) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明