博碩士論文 992212007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.172.111.71
姓名 林俊佑(Chun-Yu Lin)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 電激發有機雷射微共振腔研究
(Studies of Microcavity in Electrically pumped Organic lasers)
相關論文
★ 用奈米壓印方式複製Papilo blumei蝴蝶 表面的疏水性質★ 半導體雷射控制頻率
★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用★ 193nm深紫外光學薄膜之研究
★ 超晶格結構之硬膜研究★ 交錯傾斜微結構薄膜在深紫外光區之研究
★ 膜堆光學導納量測儀★ 紅外光學薄膜之研究
★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測★ 成對表面電漿波生物感測器之研究及其在生醫上的應用
★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 掃描式白光干涉儀應用在量測薄膜之光學常數★ 量子點窄帶濾光片
★ 以量測反射係術探測光學薄膜之特性★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文主要是研究一有助於開發電激發有機雷射的微共振腔結構。我們將嘗試垂直共振腔面射型雷射的方法,將有機發光二極體置入微共振腔結構中,藉由優化微共振腔設計來提升品質因子(Q-factor)並減少光學損耗,以此降低雷射所需的電流密度閾值。
在光學設計方面,我們提出一種經過優化的高反射鏡,是由TiO2/SiO2以非典型四分之一倍中心波長光學厚度堆疊組成,可依選擇的有機發光元件不同而改變優化參數以控制微共振腔的出光強度與半高寬,使有機材料的選擇更加彈性。
在實驗製程方面,我們提出一種「雙基板組裝式結構」。其優點為可透過調整共振腔長度來選擇出光波長。製程方面也考慮到OLED懼水氣、易氧化、遇高溫易劣解的特性,可先鍍製完兩面高反射鏡後再鍍製OLED,元件完成即可立刻進行量測。我們成功地在實驗中觀察到有機發光二極體電激發光頻譜窄化和出光強度增強的現象。
本研究提出的「雙基板組裝式優化微共振腔有機發光元件」同時具備了低吸收電極、低吸收高反射鏡及自由延長共振腔功能的優勢,預期可有效地降低元件雷射閾值,有助於未來應用於開發電激發有機雷射。
摘要(英) The thesis is the study of a microcavity structure contributing to the development of electrically pumped organic lasers. A method that is vertical cavity surface emitting lasers (VCSELs) will be used in this work. We embedded an OLED in a optical cavity. Through the optimization of the cavity design to be able to exhibit narrow linewidth (FWHM) of emission spectrum and high quality factor (Q) that is allowed laser effect active at a low current density.
In optical design, we propose an optimized high reflector. The reflector are made of two alternate low and high refractive index dielectric materials deposited into 2N + 1 layers with a quarter wavelength optical thickness for each layer. The mirrors made from well known couple of materials (TiO2/SiO2). We can change the optimization parameters to control the intensity and the linewidth of cavity modes according to the choice of the organic light emitting devices. This allows more flexibility in our choice of organic materials.
In the experimental process, we propose a “dual-substrate assembly structure.” Its advantage is that we can adjust the cavity length to select the wavelength of cavity modes. The process also takes into account the organic materials characteristics that both sides of the mirrors can be coated finished and then coated organic light emitting device is completed. In the experiment, we observed the intensity enhancement of the cavity mode and the emitting spectrum narrowing in microcavity OLED structure.
This study presents a “dual-substrate assembly structure of optimization microcavity organic light emitting device.” It has low absorption electrodes, low absorption reflectors and the freedom to extend the cavity length. According to that, a considerable reduction of the laser threshold is expected, and this study is expected to contribute to the development of electrically pumped organic lasers.  
關鍵字(中) ★ 微共振腔
★ 有機雷射
關鍵字(英) ★ Microcavity
★ Organic lasers
論文目次 Abstract ------------------------------------------------------------------- Ⅰ
摘要 ---------------------------------------------------------------------- Ⅱ
誌謝 ---------------------------------------------------------------------- Ⅲ
目錄 ---------------------------------------------------------------------- Ⅳ
圖索引 ------------------------------------------------------------------- Ⅴ
表索引 ------------------------------------------------------------------- Ⅵ
第一章 緒論 ---------------------------------------------------------- 1
1-1 有機雷射的發展歷史 ---------------------------------------- 2
1-2 電激發有機雷射需要克服的難題 ------------------------- 3
1-3 研究動機與目的 ---------------------------------------------- 4
第二章 理論 ---------------------------------------------------------- 7
2-1 有機半導體材料的光電性質 ------------------------------- 7
2-2 Fabry-Perot 型窄帶濾光片的光學特性 ------------------- 13
2-3 微共振腔有機發光元件特性 ------------------------------- 16
第三章 研究方法 --------------------------------------------------- 17
3-1 光學設計與特性模擬分析 ---------------------------------- 17
3-2 元件結構與製程 ---------------------------------------------- 31
3-3 量測儀器 ------------------------------------------------------- 36
第四章 結果與討論 ------------------------------------------------ 38
4-1 材料的折射係數與消光係數量測與分析 ---------------- 38
4-2 微共振腔的光學特性量測與分析 ------------------------- 44
4-3 微共振腔有機元件的電激發光量測與分析 ------------- 52
第五章 總結 --------------------------------------------------------- 58
參考文獻 --------------------------------------------------------------- 60
參考文獻 [1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151-154 (1998)
[2] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048-5051 (2001)
[3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121-128 (1999)
[4] D. Gebeyehu, K. Walzer, G. He, M. Pfeiffer, K. Leo, J. Brandt, A. Gerhardt, and H. Vestweber, “Highly efficient deep-blue organic light emitting diodes with doped transport layers,” Synthetic Metals, 148, 2, 205–211 (2005)
[5] P. J. Delfyett, Ed., “Special issue on High-Efficiency Light-Emitting Diodes,” ser. IEEE Journal of Selected Topics in Quantum Electronics, 8. (2002)
[6] F. Ebisawa, T. Kurokawa, S. Nara, "Electrical Properties of Polyacetylene/Polysiloxane Interface," J. Appl. Phys. 54, 3255-3259 (1983)
[7] K. Kudo, M. Yamashina, T. Moriizumi, “Field effect measurement of organic dye films,” Jpn. J. Appl. Phys. 23, 130 (1984)
[8] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett. 49, 18, 1210–1212 (1986)
[9] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal--chlorophyll-a--metal sandwich cells,” J. Chem. Phys. 62, 2139-2149 (1975)

[10] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183-185 (1986)
[11] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84, 3013-3015 (2004)
[12] M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends,” Appl. Phys. Lett. 87, 083506 (2005)
[13] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, 317, 5835, 222–225 (2007)
[14] A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 87, 203506 (2006)
[15] M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gartner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91, 071118 (2007)
[16] F. Hide, M. A. Dý´az-Garcý´a, B. J. Schwartz, M. R. Anderson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273, 1833-1836 (1996)
[17] N. Tessler, G.J. Denton, and R.H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382, 695-697 (1996)
[18] S. V. Frolov, M. Ozaki, W. Gellerman, Z.V. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2,5-dioctyloxy-p- phenylenevinylene films,” Jpn. J. Appl. Phys., Part 1 35, L1371-L1373 (1996)
[19] M.D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A.J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 11, 7035 (1998)
[20] H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90, 231109, 2007.
[21] D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103, 123104 (2008)
[22] Y. Tian, Z. Gan, Z. Zhou, D.W. Lynch, J. Shinar, J. Kang, and Q. Park, “Spectrally narrowed edge emission from organic light-emitting diodes,” Appl. Phys. Lett. 91, 143504 (2007)
[23] F. J. Duarte, L. S. Liao, and K. M. Vaeth, “Coherence characteristics of electrically excited tandem organic light-emitting diodes,” Opt. Lett. 30, 3072-3074 (2005)
[24] F. J. Duarte, “Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth,” Opt. Lett. 32, 412-414 (2007)
[25] X. Liu, H. Li, C. Song, Y. Liao, and M. Tian, “Microcavity organic laser device under electrical pumping,” Opt. Lett. 34, 503-505 (2009)
[26] Christian Grätner, “Organic Laser Diodes Modelling and Simulation”, universitatsverlag karlsruhe (2008)
[27] L. Candeias, G. Padmanaban, and S. Ramakrishnan, “The effect of broken conjugation on the optical absorption spectra of the triplet states of isolated chains of poly(phenylene vinylene)s,” Chem. Phys. Lett. 349, 394–398 (2001)
[28] M. Deussen and H. Bassler, “Anion and cation absorption spectra of conjugated oligomers and polymers,” Chem. Phys. Lett. 164, 247–257 (1992)
[29] M. Baldo, D. O’Brien, M. Thompson, and S. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film,” Phys. Rev. B 60, 20, 14 422–14 428 (1999)
[30] H. Nakanotani, H. Sasabe, and C. Adachia, “Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steadystate high current density,” Appl. Phys. Lett. 86, 213506 (2005)
[31] C. Rothe, S. King, and A. Monkman, “Electric-field-induced singlet and triplet exciton quenching in films of the conjugated polymer polyspirobifluorene,” Phys. Rev. B 72, 085220 (2005)
[32] J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. D. Marco, “Quenching effects in organic electrophosphorescence,” Phys. Rev. B 66, 235321 (2002)
[33] X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004)
[34] G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003)
[35] S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000)
[36] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999)
[37] A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006)
[38] S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998)

[39] A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007)
[40] A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005)
[41] B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” Adv. Material 12, 1655-1668 (2000)
[42] M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, , A. Fischer, A. Boudrioua, and C.C. Lee, “Optimal design of a microcavity organic laser device under electrical pumping,” Opt. Express 19(2), 493-505 (2011).
[43] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990)
[44] V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389, 362–364 (1997)
[45] M. Berggren, A. Dodabalapur, R. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997)
[46] P. A. Levermore, R. Xia, W. Lai, X. H.Wang, W. Huang, and D. D. C. Bradley, “Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications,” J. Appl. Phys. 40, 7, 1896–1901 (2007)
[47] S.-C. Lo and P. Burn, “Development of dendrimers: Macromolecules for use in organic light-emitting diodes and solar cells,” Chem. Rev. 107, 1097–1116 (2007)
[48] H. Haken and H. Wolf, “Molekülphysik und Quantenchemie,” Berlin: Springer Verlag (1998)
[49] A. Jaboski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature 131, 839-840 (1933)
[50] H. Bässler, G. Schönherr, M. Abkowitz, and D. Pai, “Hopping transport in prototypical organic glasses,” Phys. Rev. B 26, 3105-3113 (1982)
[51] 陳金鑫, “夢幻顯示器:OLED材料與元件”, 五南圖書出版社 (2009)
[52] 李正中, “薄膜光學與鍍膜技術(第六版)”, 藝軒圖書出版社 (2009)
[53] R. H. Jordan, L. J. Rothberg, A. Dodabalapur, R. E. Slusher. “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, no.14. 1997-1999 (1996)
[54] S. Tokito, T. Tsutsui, Y. Taga. “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, no.5. 2407-2411 (1999)
[55] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 12 (1996)
[56] E. Fred Schubert, “Refractive index and extinction coefficient of materials,” http://homepages.rpi.edu/~schubert/ (2004)
[57] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110-1113 (1998).
[58] M. Colle, C. Garditz, “Delayed fluorescence and phosphorescence of tris-(8-hydroxyquinoline)aluminum (Alq3) and their temperature dependence,” J. Lumin. 110, 200-206 (2004)
[59] R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: Experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996)
指導教授 李正中、鍾德元
(Cheng-Chung Lee、Te-Yuan Chung)
審核日期 2012-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明