博碩士論文 992213001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:54.85.162.213
姓名 黃世豪(Shih-hao Huang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法
(An array-based z-test method for the analysis of differential expression)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法
★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells
★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用
★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化
★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化★ 中國傳統醫藥蒙古黃耆在HCT116結腸癌細胞體外和體內實驗呈現腫瘤抑制作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由DNA微陣列晶片科技比對兩組或多組以上的生物晶片來找尋差異表現基因,目前已經被廣泛的應用在生物研究中。在分析低訊噪比晶片時,分析能力的不足使得許多相同或相似的研究得到不同或是完全矛盾的結果。雖然在分析方法的改善持續的在進行,但是倚賴t檢定來尋找差異表現基因仍舊是沒有改變的。本篇文章中,我們研究了175組資料集,認為t檢定空假設應用的不正確造成了這個缺失。我們提出了一個更適當的空假設作為解決方法並發展了一個新的合適的分析方法。這個新的分析方法取名為WABE,以z檢定為基礎,它提供可靠的基因排序以及高解析力,並且不用倚賴不具統計意義的門檻。我們使用WABE重新分析一組過敏接觸性皮炎的資料,發現經由鎳刺激過後的控制組,基因產生反應的程度比病人還要強烈。這個結果與原始的研究結果不同,我們推論這個疾病是由於一個固有系統的故障而導致的。在175組資料集中,我們嚴謹的估算過去被忽略的訊息,建議其中63%-70%的現有資料需要重新檢查。
摘要(英) The use of high-throughput expression profiling, based on technologies such as DNA microarray, to detect differentially expressed genes between two or more groups has found many applications. The analysis deficiency of data with low signal-to-noise ratios has led to results on studies of the same or similar samples that are discordant or altogether contradictory. Although efforts are continuously made to fine-tune the methodology, the reliance of such analyses on t-test for significance testing remains unchanged. We studied 175 data sets and identified the employment of t-test’s null hypothesis as the cause of deficiency; it appears to bear little relation to the reliability of the result. We proposed a more suitable null hypothesis as solution and have developed an analysis method with according designs. The method, Weighting Arrays By Errors (WABE), is based on z-test and provides a combination of reliable gene ranking and high resolving power without relying on a non-statistical cutoff. In a reanalysis of data sets on allergic contact dermatitis using WABE, we detected stronger genomic responses to nickel exposure in controls than in patients. This result contradicted the original study and led to a new inference that identifies the disease cause as malfunction of an innate system. We used the 175 data sets to conduct a severity assessment of overlooked information and concluded that 60-70% of existing data need be reexamined.
關鍵字(中) ★ 基因
★ z檢定
★ 差異表達
★ 晶片
關鍵字(英) ★ WABE
★ differential expression
★ z-test
★ array
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures v
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 3
2.1 Statistical background 3
2.2 The WABE method 4
2.3 Calculating self-reproducibility 5
2.4 Normalization 6
Chapter 3 Results 7
3.1 The impact of a more relevant null hypothesis 7
3.2 Development of an all-statistics method 11
3.3 An assessment of WABE’s impact 13
3.4 A reanalysis of Pedersen’s data sets 15
3.5 Functional Analysis By choosing 200 DEGs 18
Chapter 4 Discussion 20
References 22
Appendix 24
參考文獻 1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467-470 (1995).
2. Tan, P.K. et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic acids research31, 5676-5684 (2003).
3. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science298, 597-600 (2002).
4. Ivanova, N.B. et al. A stem cell molecular signature. Science298, 601-604 (2002).
5. Miller, R.M. et al. Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra. The Journal of neuroscience : the official journal of the Society for Neuroscience24, 7445-7454 (2004).
6. Fortunel, N.O. et al. Comment on " ’’Stemness’’: transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science302, 393; author reply 393 (2003).
7. Miklos, G.L. & Maleszka, R. Microarray reality checks in the context of a complex disease. Nature biotechnology22, 615-621 (2004).
8. Frantz, S. An array of problems. Nature reviews. Drug discovery4, 362-363 (2005).
9. Marshall, E. Getting the noise out of gene arrays. Science306, 630-631 (2004).
10. Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet365, 488-492 (2005).
11. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America103, 5923-5928 (2006).
12. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature biotechnology24, 1151-1161 (2006).
13. Shi, L. et al. Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. BMC bioinformatics6 Suppl 2, S12 (2005).
14. Guo, L. et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nature biotechnology24, 1162-1169 (2006).
15. Chen, C. et al. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology17, 2152-2162 (2008).
16. Demmer, R.T. et al. Transcriptomes in healthy and diseased gingival tissues. Journal of periodontology79, 2112-2124 (2008).
17. Pedersen, M.B., Skov, L., Menne, T., Johansen, J.D. & Olsen, J. Gene expression time course in the human skin during elicitation of allergic contact dermatitis. The Journal of investigative dermatology127, 2585-2595 (2007).
18. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols4, 44-57 (2009).
19. Huang da, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research37, 1-13 (2009).
20. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America98, 5116-5121 (2001).
21. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology3, Article3 (2004).
指導教授 李弘謙(Hoong-chien Lee) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明