博碩士論文 992213009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.172.195.49
姓名 廖家男(Chia-nan Liao)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 細胞週期蛋白D1 mRNA在小鼠胚胎及成體幹細胞和腫瘤細胞中的表現及其受多能性相關因子影響之探討
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 大腸癌細胞株之 EGFR—K-ras 訊號路徑的基因微陣列實驗 與化學基因體學分析
★ 小鼠胚胎幹細胞株之建立及人類誘導多能性幹細胞之培養技術★ 由神經生長因子誘導之細胞內訊號路徑活化的化學基因體學分析
★ 運用時間序列微陣列資料來預測調控基因★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型
★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控★ 神經生長因子在神經分化中轉錄因子活性及基因調控機制之橫觀
★ 以CRSBP-1接合子調控巨噬細胞的移動及吞噬★ Chemogenomic and Molecular Analysis of Signal Transduction Pathways in In Vivo and In Vitro Models
★ 探討人類子宮內膜 L-selectin ligands 在月經週期的表現
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 胚胎幹細胞具有自我更新及可分化為來自三個胚層組織約200多種細胞的能力。因胚胎幹細胞經培養與體內或體外誘導分化為成體細胞後,呈現人類生物及生理上之組織細胞特性與功能,故其不但具有用於基礎醫學如胚胎發育與疾病細胞機制探討之意義,而且在臨床醫療如藥物篩選與移植醫療方面也具有應用之潛力。但是,因胚胎幹細胞在來源及應用方面受限於相關倫理等問題,近年來由此而發展出誘導多能性幹細胞。利用基因轉殖技術導入Oct3/4、Sox2、Klf4與c-Myc因子,而使細胞有效地倒程式化而重組誘導成為具有與胚胎幹細胞相似特性之誘導多能性幹細胞。已知細胞週期蛋白D1是調控細胞週期的重要因子之一,其於哺乳動物細胞內可與其它調控次單元組成全脢,並於癌症細胞內會過度表現而影響到轉錄、轉譯與蛋白質穩定性等因素。本研究探討細胞週期蛋白D1於幹細胞內及細胞倒程式化過程中所扮演的角色,從而進一步探討誘導多能性幹細胞在分子層面上與細胞週期蛋白D1的關聯性。我們的結果發現細胞週期蛋白D1不但於小鼠誘導多能性幹細胞中明顯被抑制,而且此抑制現象也發生於個別全能性相關因子轉殖後之小鼠纖維母細胞中。從我們實驗結果得知,細胞重組或重組之基因皆會抑制細胞週期蛋白D1的表現,此結果顯示細胞週期蛋白D1可能在細胞倒程式化或分化過程中扮演重要的角色。
摘要(英) Embryonic stem cells (ESCs) have ability of self-renewal and differentiation to about 200 types of cells over from the three germ layers. Because somatic cells that appear the property of biological and physiological functions can be derived by ESCs through culturing and inducing for differentiation in vivo and in vitro, the study of ESCs has not only significance for the basic researches in embryo development and cell mechanism of pathology, but it has the potentiality for the biomedical application in drug screening and tissue transplantation. However, the clinical application of ESCs has been restricted by reasons of ethical issue and deriving cell source. Thus the techniques of induced pluripotent stem cells (iPSCs) have been developed recently. Basically, a cell reprogramming was occurred by transfection of Oct3/4, Sox2, Klf4 and c-Myc factors into the somatic cells. This reprogramming induces somatic cells effectively to iPSCs that cells exhibited pluripotency as well as ESCs. It has been known that Cyclin D1 is composed the regulatory subunit of a dimeric holoenzyme in mammalian cells. Cyclin D1 is frequently overexpressed in cancers and its overexpression also has been implicated to many factors including increased transcription, translation, and protein stability. In this study, we discuss what a role of cyclin-D1 is in the stem cells and the further correlation about cyclin-D1 with cell reprogramming in the molecular level. In our results, we found that cyclin-D1 was not only inhibited distinctly from the early stage of reprogramming in mouse ESCs, but also down-regulated by respectively tranfecting 4 defined pluripotent genes. Our data suggest that cyclin-D1 plays possibly an important role in cell differentiation and reprogramming.
關鍵字(中) ★ 細胞週期蛋白D1
★ 幹細胞
★ 多能性相關因子
關鍵字(英)
論文目次 摘要 i
Abstract ii
致 謝 iii
圖目錄 vii
表目錄 viii
中 英 名 詞 對 照 表 ix
第一章 緒論 1
1-1 前言 1
1-2 幹細胞研究與應用 3
1-3 誘導多能性幹細胞之發明及研究的發展 5
1-4 細胞週期蛋白D1 之研究與發展 7
第二章 實驗材料與方法 8
2-1 細胞製備 8
2-1-1 培養皿Gelatin Coating處理 8
2-1-2 小鼠胚胎纖維母細胞之製備 8
2-1-3 餵養細胞之製備 9
2-1-4 小鼠骨髓細胞之製備 9
2-2 細胞培養 10
2-2-1 小鼠胚胎纖維母細胞之培養與繼代 10
2-2-2 小鼠胚胎幹細胞之培養與繼代 10
2-2-3 小鼠誘導多能性幹細胞之培養與繼代 11
2-2-4 293FT 細胞之培養與繼代 12
2-2-5 CCRF S-180 Ⅱ小鼠腫瘤細胞株之培養與繼代 13
2-2-6 小鼠骨髓細胞之培養與繼代 13
2-3 細胞冷凍與解凍 14
2-3-1 幹細胞冷凍與解凍 14
2-3-2 成體、腫瘤細胞之冷凍與解凍 14
2-4 螢光染色 15
2-4-1 貼附型細胞免疫螢光染色 15
2-4-2 流式細胞螢光染色 16
2-5 基因轉殖 17
2-5-1 反轉錄病毒製成 17
2-5-2 反轉錄病毒轉染 18
2-6 基因表現 19
2-6-1 RNA萃取 19
2-6-2 逆轉錄聚合酶連鎖反應 20
第三章 結果 24
3-1 細胞型態 24
3-1-1 小鼠胚胎纖維母細胞與腫瘤細胞 24
3-1-2 小鼠骨髓細胞 25
3-1-3 小鼠胚胎幹細胞與誘導多能性幹細胞 26
3-2 細胞特殊生物蛋白質標記之鑑定 27
3-2-1 小鼠胚胎幹細胞之生物標記表現 28
3-2-2 小鼠誘導多能性幹細胞之生物標記表現 29
3-2-3 小鼠骨髓細胞流式細胞儀實驗結果 30
3-3 基因表現 31
3-3-1 胚胎幹細胞相關生物因子之基因表現 31
3-3-2 細胞週期蛋白D1之表現 32
3-3-3 細胞週期蛋白D1與全能性相關個別因子之關係 33
第四章 討論 34
4-1 細胞週期蛋白D1之功能 34
4-2 幹細胞的細胞週期 36
4-3 細胞週期蛋白D1與細胞倒程式化關聯性之探討 38
第五章 總結 39
第六章 參考文獻 40

參考文獻 1. Till J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 14:213-22 (1969).
2. Fang, Z. F., H. Gai, et al. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos, Elsevier. 312: 3669-3682.
3. Suemori, H., T. Tada, et al. (2001). Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI, Wiley Online Library. 222: 273-279.
4. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A.,
Swiergiel, J. J.,Marshall, V. S. & Jones, J. M. Embryonic stem cell
lines derived from human blastocysts.Science 282:1145-7(1998).
5. Oh, S.H., et al., Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest, 2004. 84(5): p. 607-17.
6. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-7.
7. Gatti, R., Meuwissen, H., Allen, H., Hong, R. & Good, R. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. The Lancet 292:1366-1369 (1968).
8. Bach, F., Albertini, R., Joo, P., Anderson,J. & Bortin, M. Bone-marrow transplantation in a patient with the wiskott-aldrich syndrome. The Lancet 292:1364-1366 (1968).
9. Barinaga, M. Fetal neuron grafts pave the way for stem cell therapies. Science 287:1421-1422 (2000).
10. Lovell-Badge, R. The future for stem cell research. Nature 414:88-91 (2001).
11. Wobus, A.M. and K.R. Boheler, Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev, 2005. 85(2): p. 635-78.
12. Takahashi, K. and S. Yamanaka (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Elsevier. 126: 663-676
13. Charles A. Goldthwaite, J., Ph.D. , The promIse of Induced pluripotent stem cells(ipscs). Stem cell information NIH, 2010.
14. Semb, H., Human embryonic stem cells: origin, properties and applications. APMIS, 2005. 113(11-12): p. 743-50.
15. Chambers, S.M., et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009. 27(3): p. 275-80.
16. Yokoo, N., S. Baba, et al. (2009). The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells, Elsevier. 387: 482-488.
17. Lian, Q., Y. Chow, et al. Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases. 104: 39.


18. CONGER, K., Dramatic transformation: Researchers directly turn mouse skin cells into neurons, skipping IPS stage. Stanford school of medicine, 2010
19. Yu J. et al., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318(5858):1917-20.
20. Nakagawa M. et al., 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 26(1):101-6.
21. Kim JB. et al., 2009. Oct4-induced pluripotency in adult neural stem cells. Cell. 136(3):411-9. 9. Sommer CA. et al., 2009.
22. Sommer, C.A., Stadtfeld, et al. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 27(3):543-9.
23. Evans, T., E.T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt.
1983. Cyclin: A protein specified by maternal mRNA in sea
urchin eggs that is destroyed at each cleavage division. Ceil
33: 389-396.
24. Swenson, K., K.M. Farrell, and J.V. Ruderman. 1986. The clam
embryo protein cyclin A induces entry into M-phase and the
resumption of meiosis in Xenopus oocytes. Cell 47: 861-870.
25. Baldin, V., J. Lukas, et al. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1, Cold Spring Harbor Lab. 7: 812-821.


26. Xiong, Y., H. Zhang, and D. Beach. 1992. D type cyclins associate
with multiple protein kinases and the DNA replication
and repair factor PCNA. Cell 71: 505-514.
27. Wang C, Li Z, Fu M, Bouras T, Pestell RG 2004. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res 119:217–237.
28. Motokura T, Arnold A 1993. PRAD1/cyclin D1 proto-oncogene: genomic organization, 5_ DNA sequence, and sequence of a tumor-specific rearrangement breakpoint. Genes Chromosomes Cancer 7:89–95.
29. Zhang YJ, Jiang W, Chen CJ, Lee CS, Kahn SM, Santella RM, Weinstein IB 1993. Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun 196:1010–1016.
30. Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J 1994. Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 57:353–361.
31. Afar DE, McLaughlin J, Sherr CJ, Witte ON, Roussel MF 1995. Signaling by ABL oncogenes through cyclin D1. Proc Natl Acad Sci USA 92:9540–9544.
32. Callanan M, Leroux D, Magaud JP, Rimokh R 1996. Implication of cyclin D1 in malignant lymphoma. Crit Rev Oncog 7:191–203.


33. Gansauge S, Gansauge F, Ramadani M, Stobbe H, Rau B, Harada N, Beger HG 1997. Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis. Cancer Res 57:1634–1637.
34. Barnes DM, Gillett CE 1998. Cyclin D1 in breast cancer. Breast Cancer Res Treat 52:1–15.
35. Amanatullah DF, Zafonte BT, Albanese C, Fu M, Messiers C, Hassell J, Pestell RG 2001. Ras regulation of cyclin D1 promoter. Methods Enzymol 333:116–127.
36. Diehl JA 2002. Cycling to cancer with cyclin D1. Cancer Biol Ther 1:226–231.
37. Stacey DW 2003. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15:158–163.
38. ChungDC 2004. Cyclin D1 in human neuroendocrine: tumorigenesis. AnnNY Acad Sci 1014:209–217.
39. Motokura, T., T. Bloom, Y.G. Kim, H. Jueppner, J. Ruderman,
H. Kronenberg, and A. Arnold. 1991. A novel cyclin encoded by a bcll-linked candidate oncogene. Nature 350:512-515.
40. Rosenberg, C., H. Kim, T. Shows, H. Kronenberg, and A. Arnold.
1991. Rearrangement and overexpression of DllS287E, a candidate oncogene on chromosome 1 lq13 in benign parathyroid
tumors. Oncogene 6: 449-453.


41. Lammie, G., V. Fantl, R. Smith, E. Schuuring, S. Brookes, R. Michalides, C. Dickson, A. Arnold, and G. Peters. 1991. D11S287, a putative oncogene on chromosome 1 lq13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 6: 439-444.
42. Jiang, W., S. Kahan, N. Tomita, Y. Zhang, S. Lu, and B. Weinstein.
1992. Amplification and expression of the human cydin D gene in esophageal cancer. Cancer Res. 52: 2980-2983.
43. Fu, M., C. Wang, et al. (2004). Minireview: Cyclin D1: normal and abnormal functions, Endocrine Soc. 145: 5439-5447.
44. Jirmanova, L., M. Afanassieff, et al. (2002). Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. 21: 5515-5528.
45. Artegiani, B., D. Lindemann, et al. Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain, Rockefeller Univ Press. 208: 937-948.
46. Edel, M. J., C. Menchon, et al. Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1, Cold Spring Harbor Lab. 24: 561-573.




47. Albanese, C., M. D’Amico, et al. (1999). Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis, ASBMB. 274: 34186-34195.
48. Holnthoner, W., M. Pillinger, et al. (2002). Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells, ASBMB. 277: 45847-45853.
49. Nelsen CJ, Rickheim DG, Tucker MM, McKenzie TJ, Hansen LK, Pestell RG, Albrecht JH 2003. Amino acids regulate hepatocyte proliferation through modulation of cyclin D1 expression. J Biol Chem 278:25853–25858.
50. Hu YL, Albanese C, Pestell RG, Jaffe RB 2003. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst 95:733–740.
51. Fu, M., M. Rao, et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth, Am Soc Microbiol. 23: 8563-8575.
52. Suzui M, Masuda M, Lim JT, Albanese C, Pestell RG, Weinstein IB 2002. Growth inhibition of human hepatoma cells by acyclic retinoid is associated with induction of p21(CIP1) and inhibition of expression of cyclin D1. Cancer Res 62:3997–4006.
53. Wang, C., N. Pattabiraman, et al. (2003). Cyclin D1 repression of peroxisome proliferator-activated receptor γ expression and transactivation, Am Soc Microbiol. 23: 6159-6173.


54. Iyengar, P., T. P. Combs, et al. (2003). Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization, Nature Publishing Group. 22: 6408-6423.
55. Song DH, Rana B, Wolfe JR, Crimmins G, Choi C, Albanese C, Wang TC, Pestell RG, WolfeMM 2003. Gastrin-induced gastric adenocarcinoma growth is mediated through cyclin D1. Am J Physiol Gastrointest Liver Physiol 285:G217–G222.
56. Pradeep, A., C. Sharma, et al. (2004). Gastrin-mediated activation of cyclin D1 transcription involves β-catenin and CREB pathways in gastric cancer cells, Nature Publishing Group. 23: 3689-3699.
57. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G 1993. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7:812–821.
58. Sherr CJ 2000. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res 60:3689–3695.
59. Dey A, Li W 2000. Cell cycle-independent induction of D1 and D2 cyclin expression, but not cyclin-Cdk complex formation or Rb phosphorylation, by IFN-γ in macrophages. Biochim Biophys Acta 1497:135–147.



60. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A 1999. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 20:501–534.
61. Zhang JM, Wei Q, Zhao X, Paterson BM 1999. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J 18:926–933.
62. Horstmann S, Ferrari S, Klempnauer KH 2000. Regulation of B-Myb activity by cyclin D1. Oncogene 19:298–306.
63. Inoue, K. and C. J. Sherr (1998). Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism, Am Soc Microbiol. 18: 1590-1600.
64. Knudsen KE, Cavenee WK, Arden KC 1999. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59:2297–2301.
65. Reutens, A. T., M. Fu, et al. (2001). Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner, Endocrine Soc. 15: 797-811.
66. Petre CE, Wetherill YB, Danielsen M, Knudsen KE 2002. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 277:2207–2215.


67. Petre-Draviam CE, Cook SL, Burd CJ, Marshall TW, Wetherill YB, Knudsen KE 2003. Specificity of cyclin D1 for androgen receptor regulation. Cancer Res 63:4903–4913.
68. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ 1997. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88:405–415.
69. Neuman, E., M. H. Ladha, et al. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4, Am Soc Microbiol. 17: 5338-5347.
70. Lamb J, Ladha MH, McMahon C, Sutherland RL, EwenME2000. Regulation of the functional interaction between cyclin D1 and the estrogen receptor. Mol Cell Biol 20:8667–8675.
71. McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME 1999. P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci USA 96:5382–5387.
72. Lamb J, Ewen ME 2003. Cyclin D1 and molecular chaperones: implications for tumorigenesis. Cell Cycle 2:525–527.
73. Kim, J. K. and J. A. Diehl (2009). Nuclear cyclin D1: an oncogenic driver in human cancer, Wiley Online Library. 220: 292-296.
74. Becker, K. A., P. N. Ghule, et al. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase, Wiley Online Library. 209: 883-893.



75. Savatier, P., S. Huang, et al. (1994). Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts, Basingstoke, Hampshire, UK: Scientific & Medical Division, Macmillan Press, c1987-. 9: 809-818.
76. Boheler, K. R. (2009). Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle, Wiley Online Library. 221: 10-17.
77. Greer Card, D. A., P. B. Hebbar, et al. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells, Am Soc Microbiol. 28: 6426-6438.
指導教授 凌慶東(Qing-Dong Ling) 審核日期 2012-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明