博碩士論文 992402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.204.2.53
姓名 李其紘(Chi-Hung Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用中子散射探討多鐵材料Co3TeO6暨普魯士藍Rb-Co-Fe@K-Ni-Cr奈米核殼結構的複雜磁相變
(Neutron scattering investigation of complex magnetic transitions in multiferroic Co3TeO6 and core@shell Prussian blue analogue Rb-Co-Fe@K-Ni-Cr nano-cubes)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文有兩部分。第一部分探討多鐵系統Co3TeO6的複雜磁相變。第二部分為奈米核殼結構普魯士藍Rb-Co-Fe@K-Ni-Cr的磁交互作用探討。
在第一部分中,利用中子繞射、磁化率、比熱、介電常數探討單晶Co3TeO6系統的鐵電與commensurate及incommensurate磁有序的關係。在磁化率、比熱的實驗中發現在低溫有四個磁相變,並利用中子繞射探討這四個磁相變的磁性行為。溫度在26、18、16 K為incommensurate磁有序的相變,19.5 K為commensurate磁有序的產生。其中在18 K的相轉變中發現了鐵電的產生,並且在鐵電產生後有負熱膨脹的行為。從中子繞射圖解出磁結構,並發現磁結構可被電場或磁場所調控。Co3TeO6應為第二類多鐵材料。
第二部分為探討奈米核殼結構普魯士藍Rb-Co-Fe@K-Ni-Cr的磁交互作用。核為250 奈米的RbCoFe普魯士藍,殼為45奈米的KNiCr普魯士藍。在86、69與67 K中觀察到磁相變。從中子繞射數據中可看出K-Ni-Cr為鐵磁性物質。Ni與Ni離子之間有兩種交互作用路徑,一種經由C與N離子透過Cr做超交互作用,另一種沿著晶體[110]方向的direct exchange。而Cr與Cr離子之間僅有一種交互作用路徑,為經由C與N離子透過Ni做超交互作用。因此認為69 K為Ni離子的磁有序溫度,而67 K為Cr離子的磁有序溫度。在Rb-Co-Fe相中並沒有看到照光的反應,認為是CoN6與FeC6八面體之間距離較遠導致電荷較難從Fe離子轉移到Co離子,導致照光沒有磁性變化。
摘要(英) There are two parts in my thesis. The first part focuses on the complex magnetic couplings in Co3TeO6. The second part focuses on the magnetic phases in core/shell Prussian blue analogue Rb-Co-Fe@K-Ni-Cr nano-cubes.
In the first part, neutron diffraction, magnetic susceptibility, specific heat, and dielectric constant of single crystal cobalt tellurate Co3TeO6 have all been measured to study the interplay between the ferroelectricity, commensurate and incommensurate magnetic ordering developed in the compound. Four critical temperatures are identified. A non-collinear arrangement of the Co spins is found. A negative thermal expansion of the crystalline unit cell is identified when electric polarization develops. Both applied magnetic field and electric field significantly affect the magnetic and electric order parameters as well. These behaviors characterize Co3TeO6 to be a type-II multiferroics.
Four magnetic phases have been identified in nano-sized core/shell Prussian blue analogue cubes, with a 250 nm Rb-Co-Fe phase in the core coated by a 45 nm K-Ni-Cr phase on the shell. The stress preserved in the core results in separated CoN6 and FeC6 octahedra, which weaken the magnetism and photo-sensitivity of the core. Three separated magnetic phase transitions at 86, 69 and 67 K are found in the K-Ni-Cr phase on the shell. Two magnetic exchange paths are identified. One propagates along the three crystallographic axis directions. The other propagates along the [110] crystallographic direction for the Ni-Ni ions, but not for the Cr-Cr ions. The severe Cr-deficiency and the appearance of direct Ni-Ni exchange are used to understand the appearance of multiple magnetic phases. The formation of compact CoN6 and FeC6 octahedra weakens the charge transfer between the Fe and Co ions, which results in the development of weak magnetic moments in the core.
關鍵字(中) ★ 多鐵材料
★ 中子散射
★ 普魯士藍
關鍵字(英) ★ multiferroic
★ Neutron scattering
★ Prussian blue analogue
論文目次 English abstract…………………………………………………………….……….….i
Chinese abstract……………………………….………………………………………ii
Acknowledgments……………………….………...………………….………………iii
Table of Contents……………….………..........………………………..…………….v
List of figures………………………………...……...…………………..…….…….viii
List of tables…………………………………….……………………………………xii

Chapter 1. Introduction
1-1 Introduction to multiferroic............................................................................1
1-2 Introduction to Prussian blue analogues.........................................................3
1-3 Propose of experiment....................................................................................5
References.............................................................................................................6

Chapter 2. Experimental instruments
2-1 X-ray diffractometer.......................................................................................8
2-2 Transmission electron microscopy (TEM)...................................................10
2-3 Magnetic measurement.................................................................................11
2-4 Dielectric constant measurement..................................................................12
2-5 Neutron powder diffraction..........................................................................13
2-6 Neutron triple-axis spectrometer (TAS).......................................................15
References...........................................................................................................17

Chapter 3. Theoretical background
3-1 X-ray diffraction...........................................................................................18
3-2 Size distribution analysis by the XRD pattern..............................................20
3-3 Neutron diffraction.......................................................................................21
3-4 Types of magnetic ordering..........................................................................23
3-5 Direct exchange and superexchange interactions.........................................27
References...........................................................................................................29

Chapter 4. Complex magnetic couplings in Co3TeO6
4-1 Background and Propose of experiments.....................................................30
4-2 Sample fabrication........................................................................................35
4-3 Crystalline structure......................................................................................36
4-4 Magnetic transitions.....................................................................................43
4-5 Commensurate Co spins correlations...........................................................48
4-6 Incommensurate Co spins correlations.........................................................52
4-7 Magnetic structure........................................................................................57
4-8 Magnetoelectric couplings............................................................................64
4-9 Conclusions..................................................................................................73
References...........................................................................................................75

Chapter 5. Magnetic phases in Rb-Co-Fe@K-Ni-Cr PBA core@shell nano-cubes
5-1 Background and propose of experiments.....................................................76
5-2 Sample preparation.......................................................................................79
5-3 Crystalline structure......................................................................................80
5-4 Core@shell structure....................................................................................85
5-5 Magnetic transitions.....................................................................................90
5-6 Spin domain.................................................................................................94
5-7 Spin arrangement.........................................................................................99
5-8 Next nearest neighbor interaction..............................................................105
5-9 Magnetic state in the core..........................................................................109
5-10 Conclusions..............................................................................................111
References.........................................................................................................112
Appendix : copyright clearance forms
參考文獻 [1] G. A. Smolenskii et al., Sov.Phys. Usp. 3, 1981 (1958).
[2] E. Ascher et al., J. Appl. Phys. 37, 1404 (1966).
[3] D. L. Fox, J. F. Scott, J. Phys. C 10, L329 (1997).
[4] D. L. Fox et al., Phys. Rev. B 21, 2926 (1980).
[5] K. Kato et al., J. Magn. Magn. Mater. 31-34, 783 (1983).
[6] J. Huang et al., Phys. Rev. B 56, 2623 (1997).
[7] T. Kimura et al., Nature 426, 55 (2003).
[8] R. E. Cohen, Nature 358, 136-139 (1992).
[9] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[10] T. Masuda et al., Phys. Rev. B 72, 014405 (2005).
[11] G. Lawes et al., Phys. Rev. Lett. 95, 087205 (2005).
[12] G. Lautenschlager et al., Phys. Rev. B 48, 6087-6098 (1993).
[13] O. Heyer et al., J. Phys.: Condens. Matter 18, L471 (2006).
[14] O. P. Vajk et al., Phys. Rev. Lett. 94, 087601 (2005).
[15] D. Lebeugle et al., Phys. Rev. B 76, 024116 (2007).
[16] P. Fischer et al., J. Phys. C: Solid St. Phys. 13, 1931 (1980).
[17] R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892-2899 (2001).
[18] A. Fraft, Bull. Hist. Chem. 33, 61 (2008).
[19] H. J. Buser et al., Inorg. Chem. 16, 2704 (1977).
[20] D. M. Pajerowski et al., Inorg. Chem. 51, 3648 (2012).
[21] O. Sato et al., Inor. Chem. 38, 20 (1999).
[22] K. W. Chapman et al., J. Am. Chem. Soc. 128, 7009 (2006).
[23] A. Bleuzen et al., J. Am. Chem. Soc. 122, 6648 (2000).
[24] S. Margadonna et al., J. Am. Chem. Soc. 126, 15390 (2004).
[25] D. Ellis, M. Eckhoff, V. D. Neff, J. Phys. Chem. 85, 1225 (1981).
[26] Y. Lu et al., Chem. Commun. 48, 6544 (2012).
[27] I. Živković et al., J. Phys.: Condens. Matter 22, 056002 (2010).
[28] M. Herak et al., J. Phys.: Condens. Matter 17, 7667-7679 (2010).
[29] S. A. Ivanov et al., Mater. Res. Bull. 47, 63-72 (2012).
[30] K. M. Rabe, C. H. Ahn and J.-M. Triscone, Physics of ferroelectrics: a modern perspective (Springer-Verlag, Berlin, 2007), p.17.
[31] M. Hudl et al., Phys. Rev. B. 84 180404(R) (2011).
[32] Website of BT-1 in NIST, http://www.ncnr.nist.gov/instruments/bt1/index.html
[33] Website of Wombat in ANSTO, http://www.ansto.gov.au/ResearchHub/Bragg/Facilities/Instruments/Wombat
[34] J. W. Lynn et al., J. of Res. of NIST 117, 61 (2012).
[35] Website of Taipan in ANSTO, http://www.ansto.gov.au/ResearchHub/Bragg/Facilities/Instruments/Taipan
[36] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Inc.,1976), Ch. 6.
[37] A. L. Patterson , Phys. Rev. 56, 978 (1939).
[38] V. F. Sears, Neutron News 3, 26 (1992).
[39] G. E. Bacon, Neutron diffraction (Oxford Press, 1975), Ch. 6.
[40] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Inc.,1976), Ch. 32.
[41] A. V. Funes et al., Dalton Trans. 44, 2390 (2015).
[42] I. Živković et al., J. Phys.: Condens. Matter 22, 056002 (2010).
[43] M. Herak et al., J. Phys.: Condens. Matter 17, 7667-7679 (2010).
[44] K. M. Rabe et al., Physics of ferroelectrics: a modern perspective (Springer- Verlag, Berlin, 2007), p.17.
[45] S. A. Ivanov et al., Mater. Res. Bull. 47, 63-72 (2012).
[46] M. Hudl et al., Phys. Rev. B. 84 180404(R) (2011).
[47] R. Becker, M. Johnssona, and H. Berger, Acta Cryst. C62, i67-i69 (2006).
[48] A. B. Harris, Phys. Rev. B. 85 100403(R) (2011).
[49] P. Tolédano et al., Phys. Rev. B 85, 214439 (2012).
[50] J. L. Her et al., Phys. Rev. B. 84 235123 (2011).
[51] A. C. Larson et al., LANL Report , LAUR 86, 748 (1990).
[52] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
[53] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Inc.,1976), Ch. 31.
[54] C. R. dela Cruz et al., Phys. Rev. B 73, 100406(R) (2006).
[55] T. Kimura et al., Phys. Rev. B 71 224425 (2005).
[56] J. Baier et al., Phys. Rev. B 73 100402(R) (2006).
[57] G. Shirane et al., Neutron Scattering with a Triple-Axis Spectrometer Basic Techniques (Cambridge University Press, 2004), Ch. 3.
[58] J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
[59] T. Horiguchi, Phys. Lett. A 113, 425 (1986).
[60] J. B. Fouet, P. Sindzingre, and C. Lhuiller, Eur. Phys. J. B 20, 241 (2001).
[61] W. L. Roth, Phy. Rev. 110, 1333 (1958).
[62] W. L. Roth, J. Phys. Chem. Solids 25, 1 (1964).
[63] A. Sazonov et al., J. Phys.:Conf. Ser. 211, 012011 (2010).
[64] O. Sato et al., Science 272, 704 (1996).
[65] L. Egan et al., J. Am. Chem. Soc. 128, 6034 (2006).
[66] M. Zentkova et al., J. Phys.: Cond. Matter 19, 266217 (2007).
[67] D. M. Pajerowski et al., J. Am. Chem. Soc. 132, 4058 (2010).
[68] D. M. Pajerowski et al., Chem. Mater. 23, 3045 (2011).
[69] M. F. Dumont et al., Inorg. Chem. 50, 4295 (2011).
[70] E. Coronado et al., J. Mater. Chem. C 1, 6981 (2013).
[71] S. Yoshii et al., J. Low Temp. Phys. 170, 383–388 (2013).
[72] D. M. Pajerowski et al., Phy. Rev. B 86, 054431 (2012).
[73] A. C. Larson et al., LANL Report , LA-UR 86, 748 (1990).
[74] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
[75] A. L. Patterson, Phys. Rev. 56, 978 (1939).
[76] R. Tahmasebi et al., J Alloys Compd. 472, 334 (2009).
[77] M. Presle et al., J. Phys. Chem. C 118, 13186-13195 (2014).
[78] C. Y. Li et al., Int. J. Mol. Sci. 14, 17618 (2013).
[79] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Inc.,1976), Ch. 31.
[80] D. M. Pajerowski et al., New J. Phys. 9, 222 (2007).
指導教授 李文献(Wen-Hsien Li) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明