博碩士論文 992402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.137.170.183
姓名 Tamalampudi Srinivasa Reddy(Srinivasa Reddy Tamalampudi)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Opto-Electronic Applications of Two-Dimensional (2D) Materials and their Heterostructures)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來「二維單晶奈米薄膜」之蓬勃發展,以蔚為風潮。在這些發展中,石墨烯固然扮演領銜之角色,然而石墨烯雖有其特殊之物理、化學、機械、光電特性,但因石墨烯的極弱吸光係數(~2.3%)、短暫之光載子生命期,導致其僅具頗低之光響應率(photoresponsivity, 5*10-4 AW-)與內在量子效率(intrinsic quantum efficiency, 6-16%)。又因石墨烯不具能隙(energy bandgap),使其無明顯之開關態(on/off state)、並擁較高之暗電流(dark current),致使石墨烯在光偵測(photodetection)應用上呈現缺點、與無謂之能量消耗。相對的,「二維單晶半導體奈米薄膜(2D single-crystalline semiconductor nanomembranes)」材料卻能克服上述石墨烯之諸多光
電(opto-electronic)缺點,在我們最近研究的「二維單晶半導體奈米薄膜」,例如:InSe,GeS , GeS/InSe p-n junction 等 材 料 , 我 們 可 以 這 些 材 料 製 備 奈 米 薄 膜 光 感 測 元 件
(photodetector),並選擇將這些奈米薄膜光感測元件製備於堅硬之 SiO2/Si 晶片、或撓曲之聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)的基板上。這些奈米薄膜做成之光感測元件,
有極寬之波長響應範圍(photoresponse range),適用於可見光至遠紅外光之偵測,且具極高之光響應率(photoresponsivity),並擁有快速對光響應(~300 μs)及穩定持久(目前實驗以小時計)光控開關(photo-switching)之優點。

近來發展之「二維單晶半導體奈米薄膜」材料,展現其具有獨特之維度、超薄、與原子等級平坦表面之結構特性。利用「二維單晶半導體奈米薄膜」可製備成超小、但擁有優良光響應率、量子效率、比探測率之光電元件。在這研究計劃裡,我們將利用個別之「二維單晶半導體奈米薄膜」、以及不同之「二維單晶半導體奈米薄膜」組合成奈米元件,例如:p-n 接面二極體、光伏效應、發光二極管、場效電晶體等,以做為光電儀器與生物感測之應用。
摘要(英) Two-dimensional crystals with a wealth of exotic dimensional-dependent properties are promising candidates for next-generation ultrathin and flexible optoelectronic devices. First, we demonstrate that few-layered InSe photodetectors, fabricated on both a rigid SiO2/Si substrate and a flexible polyethylene terephthalate (PET) film, are capable of conducting broadband photodetection from the visible to near-infrared region (450−785 nm) with high photoresponsivities of up to 12.3 AW−1 at 450 nm (on SiO2/Si) and 3.9 AW−1 at 633 nm (on PET). These photoresponsivities are superior to those of other recently reported two-dimensional (2D) crystal-based (graphene, MoS2, GaS, and GaSe) photodetectors. The InSe devices fabricated on rigid SiO2/Si substrates possess a response time of ∼50 ms and exhibit long-term stability in photoswitching. These InSe devices can also operate on a flexible substrate with or without bending and reveal comparable performance to those devices on SiO2/Si. With these excellent optoelectronic merits, we envision that the nanoscale InSe layers will not only find applications in flexible optoelectronics but also act as an active component to configure versatile 2D heterostructure devices.
Next, we demonstrate that three types of Van der Waal based heterojunctions, they are isotype (n-n) junction, anisotype (p-n) junction and iso-anisotype hetero junction (n –ambipolar semiconductor). The fabricated isotype junction between the few layered flakes of n- InSe and multilayer n-MoTe2 exhibits rectification kind of behavior in forward bias and shows non-saturated current in reverse bias mode. The highest rectification ratio of the Isotype junctions is around 10 at zero gate voltage. Further, we demonstrate the temperature dependent current transport mechanism in isotype junction from 77K to 300 K. Next, the anisotype junction between few layered flakes of n-InSe and p-GeS shows the rectification behavior in forward bias and saturation current in reverse bias mode. The measured rectification ratio and ideality factor of the anisotype junction are 2.3 and 105 at Vg= -80 V Then, we studied the optical properties of the anisotype junction and the achieved responsivity and quantum efficiency are 2 AW-1 and 40. Next, we demonstrate the fabrication and characterization of a new kind of a junction, named it as an iso-anisotype junction between n-InSe and ambipolar graphene. Further, it has been demonstrated that the output characteristics of the iso-type junction could be modulated by applied gate voltage. The gate dependent electrical characteristics proves that, we can create isotype and anisotype hetero junctions within the same device, by simply tuning the fermi level of ambipolar (MoTe2) semiconductor by using back gate voltage . Further we demonstrate the application of the iso-anisotype device as a photovoltaic cell and the measured fill factor of the device is 0.28.
關鍵字(中) ★ Materials
★ Nano
★ Two-dimensional Materials
★ Indium selenide
★ Photodetectors
關鍵字(英) ★ Two-dimensional Materials
★ Indium selenide
★ Photodetectors
★ Materials
★ Nano
論文目次 Chinese Abstract ii
Abstract iii
Table of Figures viii
Nomenclature xii
Chapter 1: Introduction about graphene and other two dimensional materials 1
1.1. Review on Graphene 1
1.2. 2D Materials beyond Graphene 2
1.4 2D Photodetectors 3
2.InSe photodetectors 6
2.1. Crystal growth and Band Structures 6
2.2. Characterization Techniques 7
2.2.1 X-Ray Diffraction (XRD) characterization 7
2.2.2 Raman characterization. 9
2.2.3 SEM and EDAX charactization 11
2.2.4 Transmission electron microscopy (TEM) charactization: 12
2.3 Device fabrication 13
2.4. Electrical characterization 14
2.5. Optical characterization 15
2.5.1 Photo current 16
2.5.2 Responsivity 17
2.5.3 Quantum efficiency 17
2.5.4 Detectivity 18
2.6 Wave length dependent optical charactization 18
2.7 Gate dependent optical charactization 19
2.8 current-time response 21
2.9 Flexiable InSe Photodetectors 22
2.10 Summary of the 2D materials based photodetector merits 24
2.11 Conclusions 25
References: 26
3. Two dimensional hetero structures and their applications 30
3.1. Principles of p-n junction 31
3.2 P-N junction under zero bias condition: 32
3.3 P-N junction under forward bias condition 33
3.4 P-N junction under reverse bias condition 34
3.5 p-n junction diode characteristics: 35
3.6 Types of Heterojunctions: 36
3.6.1 Isotype Junction: 36
3.6.2 Anisotype junction: 37
3.6.3 Iso-anisotype junction: 38
4 Isotype junction of n-MoTe2/n-InSe 39
4.1 MoTe2 Crystal Growth: 39
4.2 Electrical characterization of isotype junction 40
4.3 Low temperature electrical charactization 42
4.4 Band diagram of Isotype junction of n-MoTe2/n-InSe 43
5 Anisotype junction of p-GeS/n-InSe 47
5.1 Opto- electronic characterization of anisotype junction 48
5.2 Band diagram of anisotype junction of p-GeS/n-InSe 49
5.3 Opto-electronic characteristics of anisotype junction of p-GeS/n-InSe 52
6 Iso-anisotype junctions of ambipolar graphene/n-InSe and ambipolar MoTe2/n-InSe 55
6.1 Iso-anisotype junction of ambipolar graphene/n-InSe 56
6.2 Iso-anisotype junction of ambipolar MoTe2/n-InSe 57
6.3 Band diagram of iso-anisotype junction of ambipolar-MoTe2/n-InSe 59
6.4 Solar Cell Application of the iso-anisotype junction: 61
6.5 Conclusion 62
參考文獻 (1) Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S., et al. Adv. Funct. Mater. 2013.
(2) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2011, 6, 74-80.
(3) Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V., et al. Science 2013, 340, 1311-1314.
(4) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699-712.
(5) Camara, M. O. D.; Mauger, A.; Devos, I. Phys. Rev. B 2002, 65, 125206.
(6) Olguín, D.; Rubio-Ponce, A.; Cantarero, A. Eur. Phys. J. B 2013, 86, 1-9.
(7) Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B., et al. Nano Lett. 2013, 13, 1649-1654.
(8) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. ACS Nano 2012, 6, 5988-5994.
(9) Gomes da Costa, P.; Dandrea, R. G.; Wallis, R. F.; Balkanski, M. Phys. Rev. B 1993, 48, 14135-14141.
(10) Mudd, G. W.; Svatek, S. A.; Ren, T.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R., et al. Adv. Mater. 2013, 25, 5714.
(11) Lei, S.; Ge, L.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yamaguchi, H.; Gupta, G.; Vajtai, R., et al. ACS Nano 2014.
(12) Wang, J.-J.; Cao, F.-F.; Jiang, L.; Guo, Y.-G.; Hu, W.-P.; Wan, L.-J. J. Am. Chem. Soc. 2009, 131, 15602-15603.
(13) Hayashi, T.; Ueno, K.; Saiki, K.; Koma, A. J. Cryst. Growth 2000, 219, 115-122.
(14) Carlone, C.; Jandl, S.; Shanks, H. R. Phys. Status Solidi B 1981, 103, 123-130.
(15) Birkmire, R. W.; Eser, E. AnRMS 1997, 27, 625-653.
(16) Late, D. J.; Liu, B.; Luo, J.; Yan, A.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. Adv. Mater. 2012, 24, 3549-3554.
(17) Ghatak, S.; Pal, A. N.; Ghosh, A. ACS Nano 2011, 5, 7707-7712.
(18) Zhang, W.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Cheng, Y.-J.; Li, L.-J. Adv. Mater. 2013, 25, 3456-3461.
(19) Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.-m.; Tsang, J.; Perebeinos, V.; Avouris, P. Nano Lett. 2009, 9, 1039-1044.
(20) Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A. J. Science 2009, 325, 1665-1667.
(21) Jiang, J.; Tsao, S.; O’Sullivan, T.; Zhang, W.; Lim, H.; Sills, T.; Mi, K.; Razeghi, M.; Brown, G. J.; Tidrow, M. Z. Appl. Phys. Lett. 2004, 84, 2166-2168.
(22) Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Nano Lett. 2008, 8, 4002-4006.
(23) Tu, H.; Kelley, D. F. Nano Lett. 2005, 6, 116-122.
(24) Sánchez-Royo, J. F.; Pellicer-Porres, J.; Segura, A.; Gilliland, S. J.; Avila, J.; Asensio, M. C.; Safonova, O.; Izquierdo, M.; Chevy, A. Phys. Rev. B 2006, 73, 155308.
(25) Sze, S. M., Semiconductor Devices: Physics and Technology. J. Wiley & Sons: 2001.
(26) Liu, M. Y.; Chen, E.; Chou, S. Y. Appl. Phys. Lett. 1994, 65, 887-888.
(27) Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Nano Lett. 2003, 3, 193-198.
(28) Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. ACS Nano 2012, 6, 5635-5641.
(29) Ishii, T. J. Cryst. Growth 1988, 89, 459-462.
(30) Xia, F.; Mueller, T.; Lin, Y.-m.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4, 839.
(31) Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Adv. Mater. 2011, 23, 5419.
(32) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2011, 6, 74.
(33) Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. ACS Nano 2012, 6, 5988.
(34) Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Nano Lett. 2013, 13, 1649.
(35) Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; Muchharla, B.; Talapatra, S.; Terrones, H.; Terrones, M. Adv. Funct. Mater. 2013, 23, 5511.
([36) Jacobs-Gedrim, R. B.; Shanmugam, M.; Jain, N.; Durcan, C. A.; Murphy, M. T.; Murray, T. M.; Matyi, R. J.; Moore, R. L.; Yu, B. ACS Nano 2013, 8, 514.
(37) Ho, C.-H.; Lin, C.-H.; Wang, Y.-P.; Chen, Y.-C.; Chen, S.-H.; Huang, Y.-S. ACS Appl. Mater. Interfaces 2013, 5, 2269.
(38) Lei, S.; Ge, L.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yamaguchi, H.; Gupta, G.; Vajtai, R.; Mohite, A. D.; Ajayan, P. M. ACS Nano 2014, 8, 1263.
指導教授 IAMS Academica Sinica、NCU-Physics
(Dr. Yit-Tsong chen、Dr. Szu-Yuan Chen)
審核日期 2015-11-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明