博碩士論文 992403004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:52.15.231.106
姓名 傅志偉(Chih-Wei Fu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 由自然界靈感設計及合成出抗癌症和抗癌症轉移試劑:細胞和動物體內之活性測試評估
(Nature-inspired anti-cancer and anti-metastatic agents: Design, synthesis and biological validation in vitro and in vivo)
相關論文
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討
★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型★ Squamocin 之合成研究
★ 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試
★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究
★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑★ LCA-Fentanyl Hybrid Molecules: Anaesthetic Implications of Antimetastasis Chemotherapy
★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯
★ DNA型式碳水化合物抗原之生物偵測器的開發及應用★ 設計合成新型的唾液酸轉移酶抑制劑
★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 主題一:以中心結構含有氮、雙氮及多氮雜環連接四個吲哚作為抗癌試劑之研究

我們實驗室於2012年在J. Med. Chem.發表過四吲哚衍生物SK228具有抑制乳癌增生能力,不過其溶解性差及在動物體中具有毒性高,於是此篇研究著重在改善其缺點。
在最佳化條件實驗中,我們發現利用I2/EtOH和CAN/ACN在迴流條件下分別可以催化2,5及2,6雙醛吡啶形成以吡啶為核心結構16種(化合物2-17)四吲哚衍生物,其中化合物14 (FCW81)是當中最具有抑制三陰性乳癌MDA-MB-231細胞株增生能力,其效果與SK228同屬奈莫爾濃度等級;此化合物可以誘導DNA斷裂、遏止細胞週期於G2/M和細胞凋亡;在移植乳癌細胞裸鼠實驗中可以有效抑制其腫瘤生長且其副作用大為降低,所以此化合物具有潛力成為抗三陰性乳癌試劑。
以多氮雜環為核心連接四吲哚衍生物已被合成出來,其中化合物24具有抑制乳癌MDA-MB-231及大腸癌SW480細胞株生長能力,其效果分別為0.37及1.08 μM,後續相關生物及動物實驗正在進行中。

主題二:合成石膽酸類似物含有不同長度疊氮長鏈做為唾液酸轉移酶抑制劑及抗癌症轉移試劑

近年來,癌症的轉移往往伴隨唾液酸轉移酶異常表現,本實驗室曾經開發出litho-O-Asp、AL10及KS034具有抑制此轉移酶能力,但其抗移轉效力的表現為適中。此研究著重在增加疊氮長鏈來增加其抗移轉能力並保有唾液酸轉移酶抑制效果及開發出具有選擇性唾液酸轉移酶抑制劑。
在第一代石膽酸衍生物中,我們合成出15種衍生物具有NBD、p-nitrobenzoyl或coumarin官能基之不同類型石膽酸衍生物含不同疊氮長鏈,發現化合物含有NBD結構石膽酸衍生物具有抑制唾液酸轉移酶能力效果與AL10及KS034相當,並且Ⅱ-2cA (FCW34)與Ⅱ-2dA (FCW66)二化合物在抗移轉能力是2或3倍優於AL10及KS034;在移植MDA-MB-231細胞的裸鼠移植瘤實驗中,FCW34試劑可以有效縮小腫瘤生長也同時抑制其癌症轉移,故化合物FCW34在抑制腫瘤生長及癌症轉移是有發展潛力。
在第二代石膽酸衍生物中,著重在石膽酸3號位置、胺基酸側鏈及芳香環上修飾,發現化合物FCW393及FCW551具有抑制唾液酸轉移酶能力效果與FCW34相當,並且在抗移轉能力是4倍或8倍優於FCW34,並且化合物FCW393在移植MDA-MB-231細胞的裸鼠移植瘤實驗中,可以有效縮小腫瘤生長也同時抑制其癌症轉移,故化合物FCW393在抑制腫瘤生長及癌症轉移亦具有發展潛力。
摘要(英) Topic Ⅰ:Synthesis of core structure of one, two and many nitrogen atoms containing heterocycle with four indole derivatives as anti-cancer agents

Our previous developed tetraindole compounds, found that SK228 has a promising anti-cancer activity at the nanomolar range (J. Med. Chem. 2012, 55, 1583-1592). However, SK228 showed poor solubility and was toxic to the mice, our attempt is to improve these drawbacks in this study.
During optimization of reaction conditions, we synthesized a series of new tetraindole entities (compounds 2-17) containing a pyridine core at either 2, 5 position or 2, 6 position under I2/EtOH and CAN/ACN in reflux conditions, respectively. The results show that a potent candidate, 14 (FCW81) with a core structure of pyridine at 2,5 positions, has an optimum antiproliferative activity against human triple negative breast cancer (MDA-MB-231) cell, with similar anticancer potency compared to that of SK228. FCW81 induces DNA damage, G2/M arrest and apoptosis. Furthermore, FCW81 also significantly inhibited tumor growth in a xenograft human breast cancer mice model with apparent reduction of side effects. In summary, FCW81 has the potential to serve as an anticancer agent for the treatment of human breast cancers, especially in triple negative breast cancer.
A series of new tetraindole entities containing many nitrogen atoms heterocycle core was synthesized. Compound 24 had anticancer activity against triple negative breast cancer MDA-MB-231 and colon cancer SW480 cell lines with IC50 value 0.37 and 1.08 μM, respectively. The relative biological and animal studies are under progress.

Topic Ⅱ:Synthesis of lithocholic acid derivatives with different types of N3 linkers as sialyltransferase inhibitors and anti-metastatic agents

Recently, aberrant sialylation is found to be related to cancer metastasis. Our lab developed some sialyltransferase inhibitors, such as litho-O-Asp, AL10 and KS034, but they possessed moderate anti-migration inhibition in cellular level. This study focuses on developing the lithocholic acid derivatives to enhance the anti-migration activity with significant inhibition and selectivity of sialyltransferase.
The first generation of lithocholic acid derivatives was synthesized, 15 compounds (Ⅱ-2aA-2eA, Ⅱ-3aB-3eB and Ⅱ-4aC-4eC), containing the NBD, p-nitrobenzoyl or coumarin moieties with different length of azide linkers. We observed that lithocholic acid derivatives with NBD moiety have similar sialyltranferase inhibition in comparison to those of AL10 and KS034. Significantly, FCW34 and FCW66 had 2- or 3- folds anti-migration activity more than those of AL10 and KS034. Surprisingly, FCW34 meaningfully suppressed tumor growth and metastasis in a xenograft human breast cancer mice model. In summary, FCW34 had the potential to serve as an anti-metastasis agent for the treatment of human breast cancer with the unique inhibitory selectivity toward α(2,3)-N and α(2,6)-N sialyltransferases.
The second generation of lithocholic acid derivatives focuses on modification of lithocholic acid at C3 position, such as amino acid side chain and aromatic entities. The results showed that FCW393 and FCW551 had similar sialyltranferase inhibition in comparison to FCW34. Surprisingly, those FCW393 and FCW551 had 4- or 8- folds anti-migration activity more than that of FCW34. And FCW393 could effectively inhibited tumor growth and metastasis in a xenograft human breast cancer mice model. In summary, FCW393 display the potential to serve as an anti-metastasis agent for the treatment of human breast cancer with the unique inhibitory selectivity toward α(2,6)-N sialyltransferase.
關鍵字(中) ★ 吲哚
★ 癌症
★ 癌症轉移
★ 石膽酸
★ 唾液酸
★ 唾液酸轉移酶
關鍵字(英) ★ indole
★ cancer
★ cancer metastasis
★ lithocholic acid
★ sialyltransferase
★ sialyltransferase inhibitor
論文目次 目錄
摘要 i
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
流程目錄 xi
縮寫對照表 xii

主題一:以中心結構含有氮、雙氮及多氮雜環連接四個吲哚作為抗三陰性乳腺癌試劑之研究

1. 緒論 1
1-1 前言 1
1-2吲哚(indole)類衍生藥物 4
2. 結果與討論 7
2-1 實驗動機(pyridine系統) 7
2-2 化學部分(pyridine系統) 9
2-3 生物部分(pyridine系統) 22
2-4 實驗動機(雙氮及多氮雜環系統) 26
2-5 化學部分(雙氮及多氮雜環系統) 27
2-6 結論 33

主題二:合成石膽酸類似物含有不同長度疊氮長鏈做為唾液酸轉移酶抑制劑及抗癌症轉移試劑

3. 緒論 34
3-1 前言 34
3-2 癌症轉移與血管新生(angiogenesis)簡介 34
3-3 以癌症轉移過程為標靶之藥物治療 35
3-4 唾液酸與唾液酸轉移酶背景介紹 39
3-5 唾液酸轉移酶抑制劑 42
4. 結果與討論 48
4-1 實驗動機(不同長度疊氮長鏈系統) 48
4-2 化學部分(不同長度疊氮長鏈系統) 51
4-3 生物部分(不同長度疊氮長鏈系統) 56
4-4 實驗動機(酯鍵轉換成醯胺鍵系統) 59
4-5 化學部分(酯鍵轉換成醯胺鍵系統) 60
4-6 生物部分(酯鍵轉換成醯胺鍵系統) 68
4-7 實驗動機(改變胺基酸系統) 71
4-8 化學部分(改變胺基酸系統) 72
4-9 生物部分(改變胺基酸系統) 75
4-10 實驗動機(NBD結構上修飾系統) 76
4-11 化學部分(NBD結構上修飾系統) 77
4-12 生物部分(NBD結構上修飾系統) 80
4-13 實驗動機(石膽酸與C24上修飾系統) 81
4-14 實驗動機(石膽酸與C24上修飾系統) 82
4-15 結論 86
5. 實驗部分 88
5-1 一般實驗方法 88
5-2 主題一之化合物實驗步驟與光譜資料 92
5-3 主題二之化合物實驗步驟與光譜資料 110
6. 參考文獻 156
7. 附錄 170
參考文獻 1. http://www.mohw.gov.tw/CHT/Ministry/, 衛生福利部網站
2. Nagaraju, G. P.; Aliya, S.; Zafar, S. F.; Basha, R.; Diaz, R.; EI-Rayes, B. F. The impact of curcumin on breast cancer. Integr. Biol. 2012, 4, 996-1007.
3. Ho, J. N.; Jun, W.; Choue, R.; Lee, J. I3C and ICZ inhibit migration by suppressing the EMT process and FAK expression in breast cancer cells. Mol. Med. Report 2013, 7, 384-388.
4. Zeynep, A. A. Antioxidant activities of retinoidal benzimidazole or indole derivatives in In Vitro model systems. Curr. Med. Chem. 2013, 20, 4633-4639.
5. Williams, J. D. ; Nguyen, S. T.; Shen G.; Ding, X.; Butler, M. M. et al. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: Synthesis and SAR of novel analogs of MBX 1066 and MBX 1090. Bioorg. Med. Chem. 2013, 21, 7790–7806.
6. Kwon, S. H.; Jeong, M. Y.; Park, K. C.; Youn, S. W.; Huh, C. H.; Na, J. I. A new therapeutic option for facial seborrhoeic dermatitis: indole-3-acetic acid photodynamic therapy. JEADV 2013, 28, 94-99.
7. Cohen, J. H.; Kristal, A. R.; Stanford, J. L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 2000, 92, 61–68.
8. Higdon, J. V.; Delage, B.; Williams, D. E.; Dashwood, R. H. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236.
9. Minich, D. M.; Bland, J. S. A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals. Nutr. Rev. 2007, 65, 259–267.
10. Verhoeven, D. T.; Goldbohm, R. A.; Poppel, G.; Verhagen, H.; Brandt, P. A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 733–748.
11. Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Bcl-2 familymediated apoptotic effects of 3,3’-diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol. 2002, 63, 1085-1097.
12. Howells, L. M.; Gallacher-Horley, B.; Houghton, C. E.; Manson, M. M.; Hudson, E. A. Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumor cell line MDAMB468 but not in the nontumorigenic HBL100 line. Mol. Cancer Ther. 2002, 1, 1161–1172.
13. Katdare, M.; Osborne, M. P.; Telang, N. T. Inhibition of aberrant proliferation and induction of apoptosis in preneoplastic human mammary epithelial cells by natural phytochemicals. Oncol. Rep. 1998, 5, 311–315.
14. Rahman, K. M.; Aranha, O.; Sarkar, F. H. Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutr. Cancer 2003, 45, 101–112.
15. Frydoonfar, H. R.; McGrath, D. R.; Spigelman, A. D. Inhibition of proliferation of a colon cancer cell line by indole-3-carbinol. Colorectal Dis. 2002, 4, 205-207.
16. Hudson, E. A.; Howells, L. M.; Gallacher-Horley B.; Fox, L. H.; Gescher, A.; Manson, M. M. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line. BMC Cancer 2003, 3, 1-18.
17. Zheng, Q.; Hirose, Y.; Yoshimi, N.; Murakami, A.; Koshimizu, K.; Ohigashi, H. et al. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J. Cancer Res. Clin. Oncol. 2002, 128, 539–546.
18. Chinni, S. R.; Sarkar, F. H. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res. 2002, 8, 1228–1236.
19. Frydoonfar, H. R.; McGrath, D. R.; Spigelman, A. D. The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line ANZ J. Surg. 2003, 73, 154–156.
20. Nachshon-Kedmi, M.; Yannai, S.; Haj, A.; Fares, F. A. Indole-3-carbinol and 3,3’-diindolylmethane induce apoptosis in human prostate cancer cells Food Chem. Toxicol. 2003, 41, 745–752.
21. Leong, H.; Firestone, G. L.; Bjeldanes, L. F. Cytostatic effects of 3,3’-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expression Carcinogenesis 2001, 22, 1809–1817.
22. Weng, J. R.; Tsai, C. H.; Kulp, S. K.; Chen, C. S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Letter. 2008, 262, 153–163.
23. Abdelrahim, M.; Newman, K.; Vanderlaag, K.; Samudio, I.; Safe, S. 3,3’-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006, 27, 717–728.
24. Garikapaty, V. P.; Ashok, B. T.; Tadi, K.; Mittelman, A.; Tiwari, R.K. 3,3’-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem. Biophys. Res. Commun. 2006, 340, 718-725.
25. Kong, D.; Li, Y.; Wang, Z.; Banerjee, S.; Sarkar, F. H. Inhibition of angiogenesis and invasion by 3,3’-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res. 2007, 67, 3310–3319.
26. Li, Y.; Wang, Z.; Kong, D.; Murthy, S.; Dou, Q. P.; Sheng, S. et al. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3’-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem. 2007, 282, 21542–21550.
27. Rahman, K. W.; Li, Y.; Wang, Z.; Sarkar, S. H.; Sarkar, F. H. Gene expression profiling revealed survivin as a target of 3,3’-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res. 2006, 66, 4952–4960.
28. Herrmann, S.; Seidelin, M.; Bisgaard, H. C.; Vang, O. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis 2002, 23, 1861-1868.
29. Nachshon-Kedmi, M.; Yannai, S.; Fares, F. A. Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3’- diindolylmethane through the mitochondrial pathway. Br. J. Cancer 2004, 91, 1358-1363.
30. Brandi, G.; Paiardini, M.; Cervasi, B.; Fiorucci, C.; Filippone, P.; De Marco, C. A new indole-3-carbinol tetramic derivative inhibits cyclin-dependent kinase 6 expression , and induce G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 2003, 63, 4028-4036.
31. Li, W. S.; Wang, C. H.; Ko, S. K.; Chang, T. T.; Jen, Y. C.; Yao, C. F.; More, S. V.; Jao, S. C. Synthesis and evaluation of the cytotoxicities of tetraindoles: observation that the 5-hydroxy tetraindole (SK228) induces G2 arrest and apoptosis in human breast cancer cells. J. Med. Chem. 2012, 55, 1583-1592.
32. (a) Lima, L. M.; Barreiro, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005, 12, 23-49. (b) Patani G. A.; LaVoie, E. J. Bioisosterism: a rational approach in drug design. Chem. Rev. 1996, 96, 3147-3176.
33. Shiri, M.; Zolfigol, M. A.; Kruger, H. G. Tanbakouchian Z. Bis and trisindolylmethanes (BIM and TIMs). Chem. Rev. 2010, 110, 2250-2293.
34. Nath, J.; Ghosh, H.; Yella, R.; Patel, B. K. Molecular iodine mediated preparation of isothiocyanates from dithiocarbamic acid salts. Eur. J. Org. Chem. 2009, 12, 1849-1851.
35. Das, S. K.; Frey, J. Regioselective double Boekelheide reaction: first synthesis of 3,6-dialkylpyrazine-2,5-dicarboxaldehydes from DL-alanine. Tetrahedron Lett. 2012, 53, 3869-3872.
36. Lichtenthaler, F. W.; Brust, A.; Cuny, E. Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem. 2001, 3, 201-209.
37. Boger, D. L.; Coleman, R. S.; Panek, J. S. A detailed, convenient preparation of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate. J. Org. Chem. 1985, 50, 5377-5379.
38. Risau, W. Mechanisms of angiogenesis. Nature 1999, 386, 671-674.
39. Folkman, J. Clinical applications of research on angiogenesis. N. Engl. J. Med. 1995, 333, 1757-1763.
40. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002, 2, 442-454.
41. Raymond, W. S.; Aidan, F.; Ramaswamy, S. Genome-wide views of cancer metastasis. Drug Discov. Today Dis. Mech. 2005, 2, 165-169.
42. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307, 58-62.
43. Brooks, P. C.; Montgomery, A. M. P.; Rosenfeld, M. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994, 79, 1157-1164.
44. Bischoff, J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995, 5, 69-73.
45. Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285, 1182-1188.
46. Kufe, D. W.; Pollock, R. E.; Weichselbaum, R. R.; Bast, Jr, R. C.; Gansler, T. S.; Holland, J. F.; Frei, III, E. Cancer Medicine, 6th Edition.
47. Laura, K. S.; Donna, P. S.; Elaina, M.; Chen, H.; Tsai, J.; Chu, L.; Lesley, T.; Michael, L.; Shelly, M.; Linda, G.; Jolanta, S. J.; Tang, C.; Axel, U.; Michael, E. B.; Evan, H.; Gerald, M. K.; Peter, H.; Powell, T. J. Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)-phenyl]5-methylisoxazole-4-carboxamide. Clin. Cancer Res. 1997, 3, 1167-1177.
48. Brain, P. E.; David, A. C. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 1999, 103, 1227-1230.
49. Hu, J.; Philippe, E.; Sang, Q. A.; Ghislain, O. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature 2007, 6, 480-498.
50. Benjamin, G.; Asher, M.; Reuven, O.; Giannoula, K. Successful antiangiogenic therapy for neuroblastoma with thalidomide. J. Clin. Oncol. 2007, 25, 5321-5324.
51. Tetsu, A.; Junko, I.; Suguru, N.; Hiroshi, O.; Shun-Ichi, W.; Noriki, I.; Masabumi, S.; Yasuo, F. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592-5595.
52. Mark, S. S.; Irena, S.; Frank, H.; Ivan, D. H.; Nir, O.; Alexander, L.; Terrence, R. B. Non-amine based analogues of lavendustin A as protein-tyrosine kinase inhibitors. J. Med. Chem. 1993, 36, 3010-3014.
53. Baker, M. A.; Taub, R. N.; Kanani, A.; Brockhausen, I.; Hindenburg, A. Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. Blood 1985, 66, 1068–1071.
54. Petretti, T.; Kemmner, W.; Schulze, B.; Schlag, P. M. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 2000, 46, 359–366.
55. Burchell, J.; Poulsom, R.; Hanby, A.; Whitehouse, C.; Cooper, L.; Clausen, H. et al. An alpha-2,3 sialyltransferase (ST3GalI) is elevated in primary breast carcinomas. Glycobiology 1999, 9, 1307–1311.
56. Recchi, M. A.; Hebbar, M.; Hornez, L.; Harduin-Lepers, A.; Peyrat, J. P. Delannoy P. Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 1998, 58, 4066–4070.
57. Kakeji, Y.; Maehara, Y.; Morita, M.; Matsukuma, A.; Furusawa, M.; Takahashi, I. et al. Correlation between sialyl Tn antigen and lymphatic metastasis in patients with Borrmann type IV gastric carcinoma. Br. J. Cancer 1995, 71, 191–195.
58. Gretschel, S.; Haensch, W.; Schlag, P. M.; Kemmner, W. Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncology 2003, 65, 139–145.
59. Videira, P. A.; Correia, M.; Malagolini, N.; Crespo, H. J.; Ligeiro, D.; Calais, F. M. et al. ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer 2009, 9, 357.
60. Davidson, B.; Berner, A.; Nesland, J. M.; Risberg, B.; Kristensen, G. B.; Trope C. G. et al. Carbohydrate antigen expression in primary tumors, metastatic lesions, and serous effusions from patients diagnosed with epithelial ovarian carcinoma: evidence of up-regulated Tn and Sialyl Tn antigen expression in effusions. Hum. Pathol. 2000, 31, 1081–1087.
61. Blix, G.; Gottschalk, A.; Klenk, E. Proposed nomenclature in the field of neuraminic and sialic acids. Nature 1957, 179, 1088.
62. Varki, N. M.; Varki, A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. InVest. 2007, 87, 851–857.
63. Sato, C. Chain length diversity of sialic acids and its biological significance. Trends Glycosci. Glycotechnol. 2004, 16, 331–344.
64. Angata, T.; Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 2002, 102, 439–469.
65. Li, Y.; Chen, X. Sialic acid metabolism and sialyltransferase: natural functions and applications. Appl. Microbiol. Biotechnol. 2012, 94, 887-905.
66. Lee, M.; Park, J. J.; Ko, Y. G.; Lee, Y. S. Cleavage of ST6GalⅠ by radiation-induced BACE1 inhibits golgi-anchored ST6GalⅠ-mediated sialylation of integrin beta 1 and migration in colon cancer cells. Radiation Oncology 2012, 7, 47.
67. Malykh, Y. N.; Schauer, R.; Shaw, L. N-glycolylneuraminic acid in human tumours. Biochimie 2001, 83, 623–634.
68. Bast, R. C.; Bates, S.; Bredt, A. B.; Desch, C. E.; Fritsche, H.; Fues, L.; Hayes, D. F.; Kemeny, N. E.; Kragen, M.; Jessup, J.; Locker, G. Y.; Macdonald, J. S.; Mennel, R. G.; Norton, L.; Ravdin, P.; Smith, T. J.; Taube, S.; Winn, R. J. Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. J. Clin. Oncol. 1996, 14, 2843–2877.
69. Ajioka, Y.; Allison, L. J.; Jass, J. R. Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J. Clin. Pathol. 1996, 49, 560–564.
70. Kalela, A.; Ponnio, M.; Koivu, T. A.; Hoyhtya, M.; Huhtala, H.; Sillanaukee, P.; Nikkari, S. T. Association of serum sialic acid and MMP-9 with lipids and inflammatory markers. Eur. J. Clin. InVest. 2000, 30, 99–104.
71. Crocker, P. R.; Hartnell, A.; Munday, J.; Nath, D. The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconjugate J. 1997, 14, 601–609.
72. Corfield, A. P.; Williams, A. J. K.; Clamp, J. R.; Wagner, S. A.; Mountford, R. A. Degradation by bacterial enzymes of colonic mucus from normal subjects and patients with inflammatory bowel-disease - the role of sialic-acid metabolism and the detection of a novel o-acetylsialic acid esterase. Clin. Sci. 1988, 74, 71–78.
73. Gee, G. V.; Dugan, A. S.; Tsomaia, N.; Mierke, D. F.; Atwood, W. J. The role of sialic acid in human polyomavirus infections. Glycoconjugate J. 2006, 23, 19–26.
74. Alexander, D. A.; Dimock, K. Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 2002, 76, 11265–11272.
75. Ciarlet, M.; Crawford, S. E.; Estes, M. K. Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains. J. Virol. 2001, 75, 11834–11850.
76. Huberman, K.; Peluso, R. W.; Moscona, A. Hemagglutinin-neuraminidase of human parainfluenza-3 – role of the neuraminidase in the viral life-cycle. Virology 1995, 214, 294–300.
77. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007, 446, 1023-1029.
78. Drinnan, N. B.; Halliday, J.; Ramsdale, T. Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini. Rev. Med. Chem. 2003, 3, 501–517.
79. Picco, G.; Julien, S.; Brockhausen, I.; Beatson, R.; Antonopoulos, A.; Haslam, S.; Mandel, U.; Dell, A.; Pinder, S.; Taylor-Papadimitriou, J.; Burchell, J. Over-expression of ST3Gal-Ι promotes mammary tumorigenesis. Glycobiology 2010, 20, 1241-1250.
80. Bos, P. D.; Zhang, X. H.; Nadal, C.; Shu, W.; Gomis, R. R.; Nguyen, D. X.; Minn, A. J.; van de Vijver, M. J.; Gerald, W. L.; Foekens, J. A.; Massague, J. Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459, 1005-1009.
81. Schaub, C.; Müller, B.; Schmidt, R. R. Sialyltransferase inhibitors based on CMP-quinic acid. Eur. J. Org. Chem. 2000, 9, 1745-1758.
82. Jung, K. H.; Schworer, R.; Schmidt, R. R. Sialyltransferase Inhibitors. Trends Glycosci. Glycotechnol. 2003, 15, 275-289.
83. Kajihara, Y.; Kodama, H.; Wakabayashi, T.; Sato, K.; Hashimoto, H. Characterization of inhibitory activities and binding mode of synthetic 6’-modified methyl N-acetyl-β-lactosaminide toward rat liver CMP-D-Neu5Ac: D-galactoside-(2 → 6)-α-D-sialyltransferase. Carbohydr. Res. 1993, 247, 179-193.
84. Whalen, L. J.; McEvoy, K. A.; Halcomb, R. L. Synthesis and evaluation of phosphoramidate amino acid-based inhibitors of sialyltransferases. Bioorg. Med. Chem. Lett. 2003, 13, 301-304.
85. Amann, F.; Schaub, C.; Müller, B.; Schmidt, R. R. New potent sialyltransferase inhibitors- synthesis of donor and of transition-state analogues of sialyl donor CMP-Neu5Ac. Chem. Eur. J. 1998, 4, 1106-1115.
86. Hidari, I. P. J.; Oyama, K.; Ito, G.; Nakayama, M.; Inai, M.; Goto, S.; Kanai, Y.; Watanabe, K.; Yoshida, K.; Furuta, T.; Kan, T.; Suzuki, T. Identification and characterization of flavonoids as sialyltransferase inhibitors. Biochem. Biophys. Res. Commun. 2009, 382, 609-613.
87. Seko, A.; Yamase, T.; Yamashita, K. Polyoxometalates as effective inhibitors for sialyl- and sulfotransferases. J. Inorg. Biochem. 2009, 103, 1061-1066.
88. Hosoguchi, K.; Maeda, T.; Furukawa, J.; Shinohara, Y.; Hinou, H.; Sekiguchi, M.; Togame, H.; Takemoto, H.; Kondo, H.; Nishimura, S. An efficient approach to the discovery of potent inhibitors against glycosyltransferases. J. Med. Chem. 2010, 53, 5607-5619.
89. Rillahan, C. D.; Brown, S. J.; Register, A. C.; Rosen, H.; Paulson, J. C. High-throughput screening for inhibitors of sialyl- and fucosyltransferases. Angew. Chem. Int. Ed. Engl. 2011, 50, 12534-12537.
90. Wu, C. Y.; Hsu, C. C.; Chen, S. T.; Tsai, Y. C. Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun. 2001, 284, 466–469.
91. Hsu, C. C.; Lin, T. W.; Chang, W. W.; Wu, C. Y.; Lo, W. H.; Wang, P. H. et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol. Oncol. 2005, 96, 415–422.
92. Chang, W. W.; Yu, C. Y.; Lin, T. W.; Wang, P. H.; Tsai, Y. C. Soyasaponin I decreases the expression of alpha-2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 2006, 341, 614–619.
93. Lin, T. W.; Chang, W. W.; Chen, C. C.; Tsai, Y. C. Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem. Biophys. Res. Commun. 2005, 331, 953–957.
94. Chang, K. H.; Lee, L.; Chena, J.; Li, W. S. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors. Chem. Comm. 2006, 7, 629-631.
95. Chen, J. Y.; Tang, Y. A.; Huang, S. M.; Juan, H. F.; Wu, L. W.; Sun, Y. C.; Wang, S. C.; Wu, K. W.; Balraj, G.; Chang, T. T.; Li, W. S.; Cheng, H. C.; Wang, Y. C. A novel sialyltransferase inhibitor suppresses FAK/Paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res. 2011, 71, 473-483.
96. Chang, C. H.; Wang, C. H.; Chang, C. H.; More, S.; Li, W. S.; Hung, W. C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling. J. Cell. Physiol. 2010, 223, 492-499.
97. Svedham, S.; Hollander, C. A.; Shi, J.; Konradsson, P.; Liedberg,B.; Svensson, S. C. T. Synthesis of a series of oligo(ethylene glycol)-terminated alkanethiol amides designed to address structure and stability of biosensing interfaces. J. Org. Chem. 2001, 66, 4494−4503.
98. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem., Int. Ed. 2010, 49, 6288−6308.
99. Zhao, Y.; Zhong, Z. Oligomeric cholates: amphiphilic foldamers with nanometer-sized hydrophilic cavities. J. Am. Chem. Soc. 2005, 127, 17894-17901.
100. Guibe F. Allylic protecting groups and their use in a complex environment. Part II: allylic protecting groups and their removal through catalytic palladium π-allyl methodology. Tetrahedron 1998, 54, 2967-3042.
101. Titz, A.; Radic, Z.; Schwardt, O.; Ernst, B. A safe and convenient method for the preparation of triflyl azide, and its use in diazo transfer reactions to primary amines. Tetrahedron Lett. 2006, 47, 2383-2385.
102. Hung, W. Y.; Fang, G. C.; Lin, S. W.; Cheng, S. H.; Wong, K. T.; Kuo, T. Y.; Chou, P. T. The first tandem, all exciplex-based WOLED. Scientific Reports 2014, 4, 5161-5166.
103. Kim, J. U.; Kim, G. H.; Suk, H. Application of exciplex chemical sensor for visualization of liquid and vapor-phase fuel distribution. Jpn. J. Appl. Phys. 2002. 41, 895-900.
104. Kholodar, S. A.; Novopashina, D. S.; Meschaninova, M. I.; Venyaminova, A. G. Multipyrene tandem probes for point mutations detection in DNA. J. Nucleic Acids 2013, 2013, 1-12.
105. Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 2014, 43, 3525-3550.
106. Sunesson, Y.; Lime, E.; Nilsson Lill, S. O.; Meadows, R. E.; Norrby, P. O. Role of the base in Buchwald-Hartwig amination. J. Org. Chem. 2014, 79, 11961-11969.
107. Claudio, D. S ; Alan, F. W. Synthesis of 24-nor-5 beta-cholan-23-oic acid derivatives: a convenient and efficient one-carbon degradation of the side chain of natural bile acids. J. Lipid Res. 1988, 29, 1387-1395.
108. Edelsztein, V. C.; Di Chenna, P. H.; Burton, G. Synthesis of C-C bonded dimeric steroids by olefin metathesis. Tetrahedron 2009, 65, 3615-3623.
109. Michael, R.; Bernard, M. 100 Years of Baeyer–Villiger Oxidations. Eur. J. Org. Chem. 1999, 4, 737-750
110. Turner, R. B.; Mattox, V. R.; McGuckin, W. F.; Kendall, E. C. Steroid derived from bile acids. XIX. Barbier-Wieland degradation in the 11-keto series. J. Am. Chem. Sci. 1952, 74, 5814-5818.
111. Concepcion, J. I.; Francisco, C. G.; Freire, R.; Hernandez, R.; Salazar J. A.; Suarez, E. Iodosobenzene diacetate, an efficient reagent for the oxidative decarboxylation of carboxylic acids. J. Org. Chem. 1986, 51, 402-404.
指導教授 李文山、侯敦仁(Wen-Shan Li Duen-Ren Hou) 審核日期 2015-12-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明