博碩士論文 992404004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.118.226.36
姓名 霍捷(Chieh, Huo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 前列腺癌增殖與轉移分子機轉及天然物治療之研究
(MOLECULAR MECHANISMS OF THE PROLIFERATION AND METASTASIS OF PROSTATE CANCER AND NATURAL COMPOUNDS THERAPIES)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
前列腺癌是男性發生率第二高的癌症,並為世界第五最常見的癌症。前列腺癌病患接受雄激素治療以及去勢後腫瘤萎縮,但平均在1-3年內前列腺癌將會復發,希望能找尋潛在治療目標和晚期前列腺癌有效治療方法。
章3-1:我們發現了兩個天然化合物,蜂膠萃取物(CAPE)以及膽甾-3,5,6三醇,這兩種天然化合物顯示出對於前列腺癌細胞抗腫瘤活性具有療效。前列腺癌細胞LNCaP、104-R1、DU-145、22RV1、C4-2經由CAPE的誘導G1或G2 / M期的細胞週期停滯抑制細胞存活和去勢抗性前列腺癌(CRPC)細胞增殖的影響。CAPE經由調控Skp2的,P53,P21CIP1,和p27kip1而誘導細胞週期阻滯和生長抑制CRPC細胞。
章3-2:膽-3,5,6三醇經腹腔注射動物實驗後能有效抑制DU-145異種移植腫瘤體積減少了36%,膽甾-3,5,6三醇引發的前列腺癌細胞凋亡,G1細胞週期停滯。根據我們的研究結果,膽甾3,5,6三醇和CAPE將是晚期前列腺癌的有潛力的天然藥物。
章3-3:雄激素受體(AR)在前列腺癌的發生中有者不可或缺的作用。然而AR對前列腺癌轉移的作用尚不完全清楚。我們觀察到當AR過度表現在未具有AR的前列腺癌細胞之中,將抑制癌細胞運動及轉移。根據我們的研究結果,過度表現AR的PC-3細胞通過調控EMT標誌物蛋白和MMP活性可抑制細胞轉移和侵襲。
章3-4:藉由病人臨床樣品基因表現,發現相較於正常前列腺組織AKT3的mRNA表現量比早期未轉移前列腺腫瘤更低。AKT3蛋白表達在階段I,II,III的前列腺腫瘤較高於正常組織。 AKT3過度表達促進的列腺癌細胞的增殖,LNCaP、PC-3、DU-145和CA-HPV-10細胞。根據我們的研究結果AKT3的表達提供前列腺癌細胞生長優勢,然而AKT3可用於前列腺癌治療的潛在治療靶標指標。
我們發現PI3 / AKT激酶信號傳導途徑和雄激素受體(AR)在前列腺癌細胞的增殖和轉移的調控中發揮重要作用。 AKT3促進增殖抑制毛刺前列腺癌細胞的遷移和侵襲。 AR似乎是前列腺癌轉移腫瘤抑制。我們還確定了天然化合物CAPE和膽-3,5,6三醇成為去勢抵抗前列腺癌(CRPC)細胞的潛在治療藥物。根據我們的研究結果揭示了潛在治療目標和治療晚期前列腺癌潛力藥物。
摘要(英)

Prostate cancer is the second most frequently diagnosed cancer of men and the fifth most common cancer overall in the world. This disease is one of the most common non-cutaneous carcinoma of men in Western countries. Prostate cancer patients receiving androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer within 1-3 years.
Chapter 3-1: We discovered two natural compounds, caffeic acid phenethyl ester (CAPE) and cholestane-3, 5, 6-triol, exhibiting anti-cancer activity against prostate cancer cells. Treatment with CAPE suppressed cell survival and proliferation of castration-resistant prostate cancer (CRPC) cell via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.
Chapter 3-2: Cholestane-3, 5, 6-triol is one of the most abundant and active oxysterol. Intraperitoneal injection of 1 mg of cholestane-3, 5, 6-triol daily for 14 days caused a 36% reduction in average volume of DU-145 xenograft. Cholestane-3, 5, 6-triol selectively suppressed proliferation of prostate cancer cells compared to normal prostate epithelial cells with IC50 ranging from 12-31 M. Cholestane-3, 5, 6-triol caused apoptosis, G1 cell cycle arrest, loss of -actin, and redistribution of -tubulin in prostate cancer cells. Our observations suggested that cholestane-3, 5, 6-triol and CAPE are potential chemotherapy agents for advanced prostate cancer.
Chapter 3-3: Androgen receptor (AR) plays essential role during development and progression of prostate cancer. However, the role of AR on prostate cancer metastasis is not fully understood. We observed that re-expression of AR, which locates in cytoplasmic in the absence of androgen, suppressed cell motility, migration, and invasion of PC-3 cells as determined by wound healing assay and transwell assay. Migration and invasion of PC-3 and PC-3AR cells was promoted by EGF or IGF-1 but was suppressed by Casodex. Re-expression of AR reduced activity of MMP-2 and MMP-9 in PC-3 cells. Our observations suggested that re-expressing AR suppresses migration and invasion of PC-3 cells via regulation of EMT marker proteins and MMP activity.
Chapter 3-4: Online database of clinical samples, including PubMed GEO profile or Oncomine, indicated that Akt3 mRNA expression level was higher in primary prostate tumors as compared to the normal prostate tissues. Immunohistochemical staining of 65 clinical samples revealed that Akt3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of Akt3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer cells, while knockdown of Akt3 by siRNA reduced cell proliferation in these cancer cells. Our observations implied that expression of Akt3 provides growth advantage for prostate cancer cells and Akt3 may be a potential therapeutic target for prostate cancer treatment.
We discovered that PI3/AKT kinase signaling pathway and androgen receptors (AR) play essential roles in regulation of proliferation and metastasis of prostate cancer cells. AKT3 promotes proliferation bur suppresses migration and invasion of prostate cancer cells. AR seems to be a tumor suppressor on prostate cancer metastasis. We also identified natural compounds CAPE and cholestane-3beta, 5alpha, 6beta-triol to be potential therapeutic agents for castration-resistant prostate cancer (CRPC) cells. In conclusion, our studies revealed potential therapeutic targets and treatments for advanced PCa
關鍵字(中) ★ 前列腺癌
★ 轉移分子機轉
★ 天然物治療
關鍵字(英) ★ PROSTATE CANCER
★ METASTASIS
★ NATURAL COMPOUNDS
論文目次

TABLE OF CONTENTS
TABLE OF CONTENTS I
LIST OF FIGURES AND TABLES VI
ABBREVIATIONS IX
ABSTRACT XI
中文摘要 XII
CHAPTER 1
1. INTRODUCTION 1
 Prostate and Prostate cancer 1
 Roles of androgen receptor on Prostate cancer 1
 Prostate cancer cell model 2
 PI3K-Akt signaling pathway 2
 Caffeic Acid Phenethyl Ester 3
 Cholestane-3, 5, 6-triol 4
 Micro-Western Array 4
2. MATERIALS & METHODS 6
 Materials & Chemicals 6
 Cell Culture 6
 Cell Proliferation Assay 6
 Apoptosis Assays 7
 Flow Cytometry Cell Cycle Analysis 7
 Establishment of human Tumor Xenografts in Athymic Mice 8
 Transfection Overexpression and siRNA knockdown 8
 SDS-PAGE and Western Blotting Analysis 9
 Western Blotting Antibodies 9
 Micro-Western Array Blotting and Protein Level Quantification 10
 Quantitative Real-Time PCR (qRT-PCR) 10
 Quantitative Real-Time Polymerase Chain Reaction Primer 11
 Trans-well Cell Migration Assay and Invasion Assay 11
 Confocal Microscopy 12
 Wound Healing Assay 12
 Gelatin Zymography Assay 12
 Patients and Specimens 13
 Immunohistochemical analysis 13
 Online dataset Analysis 13
 Gene Correlation On-line Data Analysis 13
 Data Analysis 14
3. RESULT AND DISCUSSION 15
 3-1 Caffeic Acid Phenethyl Ester Induced Cell Cycle Arrest and Growth Inhibition in Androgen-Independent Prostate Cancer Cells via Regulation of Skp2, p53, p21 and p27 15
 CAPE treatment suppressed the proliferation and survival of castration-resistant prostate cancer (CRPC) cell lines 15
 CAPE treatment induced G1 or G2 cell cycle arrest in CRPC cells 15
 CAPE treatment retarded the growth of LNCaP 104-R1 xenograft in nude mice 16
 CAPE treatment affected the expression of proteins regulating cell survival, cell proliferation, cell cycle regulation, DNA damage checkpoint, and PI3K-Akt signaling pathway 16
 Conventional Western blotting assay was then used to confirm the changes of protein expression 16
 Skp2, p21Cip1, p27Kip1, and p53 are proteins important in regulating cell proliferation and cell cycle progression, while Chk1, Chk2, ATM, and ATR are DNA damage checkpoint proteins 16
 Overexpression of Skp2 rescued the suppressive effect of CAPE on cell proliferation of 104-R1 cells 17
 Knockdown of p27Kip1, p21Cip1, or p53 rescued the suppressive effect of CAPE on cell proliferation of LNCaP 104-R1 cells 17
 Co-treatment of CAPE with LY294002 or ABT737 suppressed proliferation of LNCaP 104-R1 cells 17
 3-2 Cholestane-3, 5, 6-triol Causes Apoptosis and Growth Inhibition in Human Prostate Cancer Cell Lines 24
 Cholestane-3, 5, 6-triol treatment retarded growth of androgen-insensitive DU-145 xenografts in nude mice 24
 Cholestane-3, 5, 6-triol suppressed proliferation of prostate cancer cells but not normal prostate epithelial cells 24
 Suppressive effect of cholestane-3, 5, 6-triol accumulated over time 24
 Cholestane-3, 5, 6-triol caused apoptosis in LNCaP prostate cancer sublines 24
 Cholestane-3, 5, 6-triol caused dysregulation of cell cycle 25
 Micro-Western Array analysis of protein expression affected by cholestane-3, 5, 6-triol treatment 25
 Cholestane-3, 5, 6-triol caused a reduction in abundance and activity of cell cycle promoting proteins and AKT signaling pathway proteins. 25
 Cholestane-3, 5, 6-triol treatment disturbed actin and tubulin in prostate cancer cells 25
 Co-treatment of cholestane-3, 5, 6-triol and hormone therapy caused additive suppression in prostate cancer cells 26
 Structure-related oxysterols suppress proliferation of castration-resistant prostate cancer cells 26
 3-3 Androgen Receptor Inhibits Epithelial-Mesenchymal Transition, Migration, and Invasion of PC-3 Prostate Cancer Cells 31
 Re-expression of AR protein suppressed migration and invasion of PC-3 cells 31
 Re-expression of AR affected signaling and EMT marker proteins 31
 EGF, IGF-1, and anti-androgen affect migration and invasion of PC-3 and PC-3AR cells 31
 Activity of MMP-2 and MMP-9 is lower in PC-3AR cells as compared to PC-3 cells 32
 3-4 Elevation of Akt3 Promotes Proliferation of Prostate Cancer Cells via regulation of Akt phosphorylation, B-Raf, TSC1, and TSC2 35
 Expression of Akt3 mRNA and protein level elevates in primary prostate tumors 35
 Elevation of Akt3 protein level promotes proliferation of prostate cancer cells 35
 Elevation of Akt3 protein increases protein abundance of B-Raf and phosphorylation of Akt while decreases expression of TSC1 and TSC2 proteins 35
 Correlation between AKT3, BRAF, TSC1, and TSC2 genes in prostate cancer tissues 36
 Inhibition of B-Raf suppresses proliferation while knockdown of TSC1 induces proliferation of prostate cancer cells 36
CONLUSION 39
FIGURES AND TABLES 40
REFERENCES 83
參考文獻



1. Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361:859-64.
2. Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, et al. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. Journal of biomedical science. 2011;18:63.
3. Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA: a cancer journal for clinicians. 2002;52:154-79.
4. Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology. 2002;60:94-100; discussion
5. Green SM, Mostaghel EA, Nelson PS. Androgen action and metabolism in prostate cancer. Molecular and cellular endocrinology. 2012;360:3-13.
6. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nature reviews Cancer. 2001;1:34-45.
7. Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer research. 2002;62:1008-13.
8. Ricke EA, Williams K, Lee YF, Couto S, Wang Y, Hayward SW, et al. Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis. 2012;33:1391-8.
9. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Molecular cell. 2007;27:380-92.
10. Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer research. 2006;66:7783-92.
11. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245-56.
12. van der Kwast TH, Schalken J, Ruizeveld de Winter JA, van Vroonhoven CC, Mulder E, Boersma W, et al. Androgen receptors in endocrine-therapy-resistant human prostate cancer. International journal of cancer. 1991;48:189-93.
13. Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, Verleun-Mooijman MC, Trapman J, Brinkmann AO, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. The American journal of pathology. 1994;144:735-46.
14. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature genetics. 1995;9:401-6.
15. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer research. 1999;59:803-6.
16. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer research. 2001;61:3550-5.
17. Ford OH, 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. The Journal of urology. 2003;170:1817-21.
18. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. The American journal of pathology. 2004;164:217-27.
19. Mohler JL, Gregory CW, Ford OH, 3rd, Kim D, Weaver CM, Petrusz P, et al. The androgen axis in recurrent prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10:440-8.
20. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer research. 2006;66:2815-25.
21. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer research. 1997;57:314-9.
22. Brown RS, Edwards J, Dogan A, Payne H, Harland SJ, Bartlett JM, et al. Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. The Journal of pathology. 2002;198:237-44.
23. Edwards J, Krishna NS, Grigor KM, Bartlett JM. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. British journal of cancer. 2003;89:552-6.
24. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nature medicine. 2004;10:33-9.
25. Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, et al. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Progress in clinical and biological research. 1980;37:115-32.
26. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investigative urology. 1979;17:16-23.
27. Chuu CP, Kokontis JM, Hiipakka RA, Liao S. Modulation of liver X receptor signaling as novel therapy for prostate cancer. Journal of biomedical science. 2007;14:543-53.
28. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). International journal of cancer. 1978;21:274-81.
29. Weijerman PC, Konig JJ, Wong ST, Niesters HG, Peehl DM. Lipofection-mediated immortalization of human prostatic epithelial cells of normal and malignant origin using human papillomavirus type 18 DNA. Cancer research. 1994;54:5579-83.
30. Kokontis J, Takakura K, Hay N, Liao S. Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer research. 1994;54:1566-73.
31. Kokontis JM, Hay N, Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Molecular endocrinology. 1998;12:941-53.
32. Mathew P. Prolonged control of progressive castration-resistant metastatic prostate cancer with testosterone replacement therapy: the case for a prospective trial. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2008;19:395-6.
33. Szmulewitz R, Mohile S, Posadas E, Kunnavakkam R, Karrison T, Manchen E, et al. A randomized phase 1 study of testosterone replacement for patients with low-risk castration-resistant prostate cancer. European urology. 2009;56:97-103.
34. Bedolla R, Prihoda TJ, Kreisberg JI, Malik SN, Krishnegowda NK, Troyer DA, et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13:3860-7.
35. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943-7.
36. Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15:4799-805.
37. Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P, et al. High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10:6572-8.
38. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S, et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer research. 2004;64:5232-6.
39. McCall P, Gemmell LK, Mukherjee R, Bartlett JM, Edwards J. Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. British journal of cancer. 2008;98:1094-101.
40. Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A, et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. The Journal of pathology. 2009;218:505-13.
41. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. The Biochemical journal. 1998;335 ( Pt 1):1-13.
42. Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:7004-9.
43. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Current biology : CB. 1997;7:261-9.
44. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125-37.
45. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098-101.
46. Hammarsten P, Cipriano M, Josefsson A, Stattin P, Egevad L, Granfors T, et al. Phospho-Akt immunoreactivity in prostate cancer: relationship to disease severity and outcome, Ki67 and phosphorylated EGFR expression. PloS one. 2012;7:e47994.
47. Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, et al. AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001;7:2475-9.
48. Bhimani RS, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer research. 1993;53:4528-33.
49. Natarajan K, Singh S, Burke TR, Jr., Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:9090-5.
50. Wu J, Omene C, Karkoszka J, Bosland M, Eckard J, Klein CB, et al. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer letters. 2011;308:43-53.
51. Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. The Journal of biological chemistry. 2004;279:6017-26.
52. Lin HP, Jiang SS, Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PloS one. 2012;7:e31286.
53. McEleny K, Coffey R, Morrissey C, Fitzpatrick JM, Watson RW. Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU international. 2004;94:402-6.
54. Lin HP, Lin CY, Liu CC, Su LC, Huo C, Kuo YY, et al. Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. International journal of molecular sciences. 2013;14:5264-83.
55. Chen MF, Wu CT, Chen YJ, Keng PC, Chen WC. Cell killing and radiosensitization by caffeic acid phenethyl ester (CAPE) in lung cancer cells. Journal of radiation research. 2004;45:253-60.
56. Lin HP, Kuo LK, Chuu CP. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells. Phytotherapy research : PTR. 2012;26:122-6.
57. Lee YT, Don MJ, Hung PS, Shen YC, Lo YS, Chang KW, et al. Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer letters. 2005;223:19-25.
58. Onori P, DeMorrow S, Gaudio E, Franchitto A, Mancinelli R, Venter J, et al. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-kappaB and induction of apoptosis. International journal of cancer. 2009;125:565-76.
59. Hung MW, Shiao MS, Tsai LC, Chang GG, Chang TC. Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer research. 2003;23:4773-80.
60. Usia T, Banskota AH, Tezuka Y, Midorikawa K, Matsushige K, Kadota S. Constituents of Chinese propolis and their antiproliferative activities. Journal of natural products. 2002;65:673-6.
61. Nomura M, Kaji A, Ma W, Miyamoto K, Dong Z. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Molecular carcinogenesis. 2001;31:83-9.
62. Chen YJ, Shiao MS, Hsu ML, Tsai TH, Wang SY. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. Journal of agricultural and food chemistry. 2001;49:5615-9.
63. Jin UH, Song KH, Motomura M, Suzuki I, Gu YH, Kang YJ, et al. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Molecular and cellular biochemistry. 2008;310:43-8.
64. Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochemical pharmacology. 2003;66:2281-9.
65. Su ZZ, Lin J, Grunberger D, Fisher PB. Growth suppression and toxicity induced by caffeic acid phenethyl ester (CAPE) in type 5 adenovirus-transformed rat embryo cells correlate directly with transformation progression. Cancer research. 1994;54:1865-70.
66. Lin YH, Chiu JH, Tseng WS, Wong TT, Chiou SH, Yen SH. Antiproliferation and radiosensitization of caffeic acid phenethyl ester on human medulloblastoma cells. Cancer chemotherapy and pharmacology. 2006;57:525-32.
67. He YJ, Liu BH, Xiang DB, Qiao ZY, Fu T, He YH. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World journal of gastroenterology. 2006;12:4981-5.
68. Kuo HC, Kuo WH, Lee YJ, Lin WL, Chou FP, Tseng TH. Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer letters. 2006;234:199-208.
69. Wang D, Xiang DB, He YJ, Li ZP, Wu XH, Mou JH, et al. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World journal of gastroenterology. 2005;11:4008-12.
70. Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z, et al. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anti-cancer drugs. 2006;17:753-62.
71. Shigeoka Y, Igishi T, Matsumoto S, Nakanishi H, Kodani M, Yasuda K, et al. Sulindac sulfide and caffeic acid phenethyl ester suppress the motility of lung adenocarcinoma cells promoted by transforming growth factor-beta through Akt inhibition. Journal of cancer research and clinical oncology. 2004;130:146-52.
72. Weyant MJ, Carothers AM, Bertagnolli ME, Bertagnolli MM. Colon cancer chemopreventive drugs modulate integrin-mediated signaling pathways. Clinical cancer research : an official journal of the American Association for Cancer Research. 2000;6:949-56.
73. Mahmoud NN, Carothers AM, Grunberger D, Bilinski RT, Churchill MR, Martucci C, et al. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis. 2000;21:921-7.
74. Nagaoka T, Banskota AH, Tezuka Y, Harimaya Y, Koizumi K, Saiki I, et al. Inhibitory effects of caffeic acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biological & pharmaceutical bulletin. 2003;26:638-41.
75. Borrelli F, Izzo AA, Di Carlo G, Maffia P, Russo A, Maiello FM, et al. Effect of a propolis extract and caffeic acid phenethyl ester on formation of aberrant crypt foci and tumors in the rat colon. Fitoterapia. 2002;73 Suppl 1:S38-43.
76. Carrasco-Legleu CE, Sanchez-Perez Y, Marquez-Rosado L, Fattel-Fazenda S, Arce-Popoca E, Hernandez-Garcia S, et al. A single dose of caffeic acid phenethyl ester prevents initiation in a medium-term rat hepatocarcinogenesis model. World journal of gastroenterology. 2006;12:6779-85.
77. Carrasco-Legleu CE, Marquez-Rosado L, Fattel-Fazenda S, Arce-Popoca E, Perez-Carreon JI, Villa-Trevino S. Chemoprotective effect of caffeic acid phenethyl ester on promotion in a medium-term rat hepatocarcinogenesis assay. International journal of cancer. 2004;108:488-92.
78. Kudugunti SK, Vad NM, Ekogbo E, Moridani MY. Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice. Investigational new drugs. 2011;29:52-62.
79. Liao HF, Chen YY, Liu JJ, Hsu ML, Shieh HJ, Liao HJ, et al. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. Journal of agricultural and food chemistry. 2003;51:7907-12.
80. Orsolic N, Knezevic AH, Sver L, Terzic S, Basic I. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. Journal of ethnopharmacology. 2004;94:307-15.
81. Wang X, Pang J, Maffucci JA, Pade DS, Newman RA, Kerwin SM, et al. Pharmacokinetics of caffeic acid phenethyl ester and its catechol-ring fluorinated derivative following intravenous administration to rats. Biopharmaceutics & drug disposition. 2009;30:221-8.
82. Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Investigational new drugs. 2012;30:1279-88.
83. Akyol S, Ginis Z, Armutcu F, Ozturk G, Yigitoglu MR, Akyol O. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity. Cell biochemistry and function. 2012;30:438-43.
84. Yagmurca M, Erdogan H, Iraz M, Songur A, Ucar M, Fadillioglu E. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats. Clinica chimica acta; international journal of clinical chemistry. 2004;348:27-34.
85. Fadillioglu E, Oztas E, Erdogan H, Yagmurca M, Sogut S, Ucar M, et al. Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. Journal of applied toxicology : JAT. 2004;24:47-52.
86. Irmak MK, Fadillioglu E, Sogut S, Erdogan H, Gulec M, Ozer M, et al. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell biochemistry and function. 2003;21:283-9.
87. Iraz M, Ozerol E, Gulec M, Tasdemir S, Idiz N, Fadillioglu E, et al. Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell biochemistry and function. 2006;24:357-61.
88. Yilmaz HR, Sogut S, Ozyurt B, Ozugurlu F, Sahin S, Isik B, et al. The activities of liver adenosine deaminase, xanthine oxidase, catalase, superoxide dismutase enzymes and the levels of malondialdehyde and nitric oxide after cisplatin toxicity in rats: protective effect of caffeic acid phenethyl ester. Toxicology and industrial health. 2005;21:67-73.
89. Oktem F, Yilmaz HR, Ozguner F, Olgar S, Ayata A, Uzare E, et al. Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester. Toxicology and industrial health. 2006;22:241-7.
90. Ozyurt H, Sogut S, Yildirim Z, Kart L, Iraz M, Armutcu F, et al. Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats. Clinica chimica acta; international journal of clinical chemistry. 2004;339:65-75.
91. Albukhari AA, Gashlan HM, El-Beshbishy HA, Nagy AA, Abdel-Naim AB. Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2009;47:1689-95.
92. Yildiz OG, Soyuer S, Saraymen R, Eroglu C. Protective effects of caffeic acid phenethyl ester on radiation induced lung injury in rats. Clinical and investigative medicine Medecine clinique et experimentale. 2008;31:E242-7.
93. Chen YJ, Liao HF, Tsai TH, Wang SY, Shiao MS. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. International journal of radiation oncology, biology, physics. 2005;63:1252-61.
94. Thysell E, Surowiec I, Hornberg E, Crnalic S, Widmark A, Johansson AI, et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PloS one. 2010;5:e14175.
95. Magura L, Blanchard R, Hope B, Beal JR, Schwartz GG, Sahmoun AE. Hypercholesterolemia and prostate cancer: a hospital-based case-control study. Cancer causes & control : CCC. 2008;19:1259-66.
96. Jusakul A, Yongvanit P, Loilome W, Namwat N, Kuver R. Mechanisms of oxysterol-induced carcinogenesis. Lipids in health and disease. 2011;10:44.
97. Kang KA, Chae S, Lee KH, Park MT, Lee SJ, Lee YS, et al. Cytotoxic effect of 7beta-hydroxycholesterol on human NCI-H460 lung cancer cells. Biological & pharmaceutical bulletin. 2005;28:1377-80.
98. Watabe T, Sawahata T. Biotransformation of cholesterol to cholestane-3beta,5alpha,6beta-triol via cholesterol alpha-epoxide (5alpha,6alpha-epoxycholestan-3beta-ol) in bovine adrenal cortex. The Journal of biological chemistry. 1979;254:3854-60.
99. Bosisio E, Galli G, Nicosia S, Galli Kienle M. Catabolism of cholesterol by bovine adrenal-cortex enzymes: in vitro formation of oxygenated sterols and side-chain cleavage products. European journal of biochemistry / FEBS. 1976;63:491-7.
100. Moriel P, Sevanian A, Ajzen S, Zanella MT, Plavnik FL, Rubbo H, et al. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2002;35:1301-9.
101. Cantwell H, Devery R. The response of the antioxidant defense system in rat hepatocytes challenged with oxysterols is modified by Covi-ox. Cell biology and toxicology. 1998;14:401-9.
102. Palladini G, Finardi G, Bellomo G. Disruption of actin microfilament organization by cholesterol oxides in 73/73 endothelial cells. Experimental cell research. 1996;223:72-82.
103. Palladini G, Finardi G, Bellomo G. Modifications of vimentin filament architecture and vimentin-nuclear interactions by cholesterol oxides in 73/73 endothelial cells. Experimental cell research. 1996;223:83-90.
104. Tang R, Huang K. Inhibiting effect of selenium on oxysterols-induced apoptosis of rat vascular smooth muscle cells. Journal of inorganic biochemistry. 2004;98:1678-85.
105. Liu H, Yuan L, Xu S, Zhang T, Wang K. Cholestane-3beta, 5alpha, 6beta-triol promotes vascular smooth muscle cells calcification. Life sciences. 2004;76:533-43.
106. Ciaccio MF, Wagner JP, Chuu CP, Lauffenburger DA, Jones RB. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nature methods. 2010;7:148-55.
107. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell. 2011;147:853-67.
108. Liu J, Kuo WL, Seiwert TY, Lingen M, Ciaccio MF, Jones RB, et al. Effect of complementary pathway blockade on efficacy of combination enzastaurin and rapamycin. Head & neck. 2011;33:1774-82.
109. Hause RJ, Kim HD, Leung KK, Jones RB. Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches. Expert review of proteomics. 2011;8:565-75.
110. Chuu CP, Chen RY, Hiipakka RA, Kokontis JM, Warner KV, Xiang J, et al. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells. Biochemical and biophysical research communications. 2007;357:341-6.
111. Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, et al. Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer science. 2011;102:2022-8.
112. Chuu CP, Lin HP. Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer research. 2010;30:3643-8.
113. Chuu CP, Hiipakka RA, Fukuchi J, Kokontis JM, Liao S. Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer research. 2005;65:2082-4.
114. Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S. Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer research. 2006;66:6482-6.
115. Snoek-van Beurden PA, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques. 2005;38:73-83.
116. Kupai K, Szucs G, Cseh S, Hajdu I, Csonka C, Csont T, et al. Matrix metalloproteinase activity assays: Importance of zymography. Journal of pharmacological and toxicological methods. 2010;61:205-9.
117. Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging. 2012;4:159-65.
118. Blagosklonny MV. Hypoxia, MTOR and autophagy: converging on senescence or quiescence. Autophagy. 2013;9:260-2.
119. Lin CY, Huo C, Kuo LK, Hiipakka RA, Jones RB, Lin HP, et al. Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PloS one. 2013;8:e65734.
120. Celli N, Dragani LK, Murzilli S, Pagliani T, Poggi A. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. Journal of agricultural and food chemistry. 2007;55:3398-407.
121. Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. European journal of biochemistry / FEBS. 2001;268:2784-91.
122. Campisi J, d′Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nature reviews Molecular cell biology. 2007;8:729-40.
123. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542-8.
124. Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell cycle. 2009;8:2502-8.
125. Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, Barrett JC. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer research. 1995;55:3576-83.
126. Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:2850-5.
127. Brown EJ. The ATR-independent DNA replication checkpoint. Cell cycle. 2003;2:188-9.
128. Brown EJ, Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes & development. 2003;17:615-28.
129. Toledo LI, Murga M, Gutierrez-Martinez P, Soria R, Fernandez-Capetillo O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes & development. 2008;22:297-302.
130. Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 2007;26:7741-8.
131. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677-9.
132. Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, et al. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell. 2000;100:681-92.
133. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277:1497-501.
134. Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. International journal of cancer. 2014;134:1013-23.
135. Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cellular and molecular life sciences : CMLS. 2013;70:4009-21.
136. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998;282:1893-7.
137. Reed SI. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature reviews Molecular cell biology. 2003;4:855-64.
138. Bashir T, Pagan JK, Busino L, Pagano M. Phosphorylation of Ser72 is dispensable for Skp2 assembly into an active SCF ubiquitin ligase and its subcellular localization. Cell cycle. 2010;9:971-4.
139. Boutonnet C, Tanguay PL, Julien C, Rodier G, Coulombe P, Meloche S. Phosphorylation of Ser72 does not regulate the ubiquitin ligase activity and subcellular localization of Skp2. Cell cycle. 2010;9:975-9.
140. Lu L, Schulz H, Wolf DA. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC cell biology. 2002;3:22.
141. Rodier G, Coulombe P, Tanguay PL, Boutonnet C, Meloche S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. The EMBO journal. 2008;27:679-91.
142. Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R, et al. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2002;8:1168-71.
143. Nguyen PL, Lin DI, Lei J, Fiorentino M, Mueller E, Weinstein MH, et al. The impact of Skp2 overexpression on recurrence-free survival following radical prostatectomy. Urologic oncology. 2011;29:302-8.
144. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, et al. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. The Journal of urology. 2003;170:241-5.
145. Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nature cell biology. 2009;11:420-32.
146. Shim EH, Johnson L, Noh HL, Kim YJ, Sun H, Zeiss C, et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer research. 2003;63:1583-8.
147. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464:374-9.
148. van Duijn PW, Trapman J. PI3K/Akt signaling regulates p27(kip1) expression via Skp2 in PC3 and DU145 prostate cancer cells, but is not a major factor in p27(kip1) regulation in LNCaP and PC346 cells. The Prostate. 2006;66:749-60.
149. Soucek T, Pusch O, Hengstschlager-Ottnad E, Adams PD, Hengstschlager M. Deregulated expression of E2F-1 induces cyclin A- and E-associated kinase activities independently from cell cycle position. Oncogene. 1997;14:2251-7.
150. Fesquet D, Labbe JC, Derancourt J, Capony JP, Galas S, Girard F, et al. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. The EMBO journal. 1993;12:3111-21.
151. Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nature cell biology. 2009;11:397-408.
152. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19:5320-8.
153. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:4240-5.
154. Cooley A, Zelivianski S, Jeruss JS. Impact of cyclin E overexpression on Smad3 activity in breast cancer cell lines. Cell cycle. 2010;9:4900-7.
155. Wegiel B, Bjartell A, Culig Z, Persson JL. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. International journal of cancer. 2008;122:1521-9.
156. Shimizu Y, Segawa T, Inoue T, Shiraishi T, Yoshida T, Toda Y, et al. Increased Akt and phosphorylated Akt expression are associated with malignant biological features of prostate cancer in Japanese men. BJU international. 2007;100:685-90.
157. Dai B, Kong YY, Ye DW, Ma CG, Zhou X, Yao XD. Activation of the mammalian target of rapamycin signalling pathway in prostate cancer and its association with patient clinicopathological characteristics. BJU international. 2009;104:1009-16.
158. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369:756-8.
159. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78:35-43.
160. Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. The Journal of biological chemistry. 2000;275:7416-23.
161. Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Current opinion in pharmacology. 2003;3:371-7.
162. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69:1227-36.
163. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358:70-3.
164. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001;294:1102-5.
165. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes & development. 2001;15:807-26.
166. Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: a family of kinase-like proteins with potent signalling regulatory function. Cellular signalling. 2007;19:238-50.
167. Wu CL, Zukerberg LR, Ngwu C, Harlow E, Lees JA. In vivo association of E2F and DP family proteins. Molecular and cellular biology. 1995;15:2536-46.
168. Murphree AL, Benedict WF. Retinoblastoma: clues to human oncogenesis. Science. 1984;223:1028-33.
169. Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Current opinion in genetics & development. 2005;15:520-7.
170. Hahm ER, Singh SV. Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity. Molecular cancer therapeutics. 2007;6:2686-95.
171. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer research. 1995;55:4438-45.
172. Lin Y, Fukuchi J, Hiipakka RA, Kokontis JM, Xiang J. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell research. 2007;17:531-6.
173. Fukuchi J, Kokontis JM, Hiipakka RA, Chuu CP, Liao S. Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer research. 2004;64:7686-9.
174. Grad JM, Dai JL, Wu S, Burnstein KL. Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Molecular endocrinology. 1999;13:1896-911.
175. Umekita Y, Hiipakka RA, Kokontis JM, Liao S. Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:11802-7.
176. Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G, et al. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. Journal of the National Cancer Institute. 2009;101:519-32.
177. Elledge SJ, Harper JW. Cdk inhibitors: on the threshold of checkpoints and development. Current opinion in cell biology. 1994;6:847-52.
178. Senapati S, Rachagani S, Chaudhary K, Johansson SL, Singh RK, Batra SK. Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK-RhoA signaling pathway. Oncogene. 2010;29:1293-302.
179. Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature cell biology. 1999;1:193-9.
180. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Current biology : CB. 1999;9:661-4.
181. Panagiotou S, Bakogeorgou E, Papakonstanti E, Hatzoglou A, Wallet F, Dussert C, et al. Opioid agonists modify breast cancer cell proliferation by blocking cells to the G2/M phase of the cycle: involvement of cytoskeletal elements. Journal of cellular biochemistry. 1999;73:204-11.
182. Ao M, Williams K, Bhowmick NA, Hayward SW. Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer research. 2006;66:8007-16.
183. Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S. Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer letters. 2009;275:86-92.
184. Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer cell. 2007;12:559-71.
185. Nolasco S, Bellido J, Goncalves J, Zabala JC, Soares H. Tubulin cofactor A gene silencing in mammalian cells induces changes in microtubule cytoskeleton, cell cycle arrest and cell death. FEBS letters. 2005;579:3515-24.
186. Shariat SF, Lamb DJ, Kattan MW, Nguyen C, Kim J, Beck J, et al. Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2002;20:833-41.
187. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer research. 1994;54:5474-8.
188. Ayala-Torres S, Zhou F, Thompson EB. Apoptosis induced by oxysterol in CEM cells is associated with negative regulation of c-myc. Experimental cell research. 1999;246:193-202.
189. Biasi F, Chiarpotto E, Sottero B, Maina M, Mascia C, Guina T, et al. Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie. 2013;95:632-40.
190. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, et al. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer metastasis reviews. 2001;20:333-49.
191. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human pathology. 2000;31:578-83.
192. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer research. 2008;68:2479-88.
193. Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A, et al. Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. The Prostate. 2006;66:1664-73.
194. Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, et al. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008;27:2243-8.
195. Sakamoto S, McCann RO, Dhir R, Kyprianou N. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer research. 2010;70:1885-95.
196. Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR. Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer research. 1999;59:1655-64.
197. Franzen CA, Amargo E, Todorovic V, Desai BV, Huda S, Mirzoeva S, et al. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer prevention research. 2009;2:830-41.
198. Vellaichamy A, Dezso Z, JeBailey L, Chinnaiyan AM, Sreekumar A, Nesvizhskii AI, et al. "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response. PloS one. 2010;5:e10936.
199. Edwards J, Krishna NS, Witton CJ, Bartlett JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9:5271-81.
200. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116:1406-18.
201. Angelucci A, Gravina GL, Rucci N, Millimaggi D, Festuccia C, Muzi P, et al. Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis in nude mice. Endocrine-related cancer. 2006;13:197-210.
202. Gohji K, Fujimoto N, Hara I, Fujii A, Gotoh A, Okada H, et al. Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. International journal of cancer. 1998;79:96-101.
203. Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and cellular biology. 2005;25:8581-91.
204. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology. 2006;172:973-81.
205. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009;119:1420-8.
206. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer. 2002;2:442-54.
207. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13:7003-11.
208. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer research. 1992;52:5104-9.
209. Richmond PJ, Karayiannakis AJ, Nagafuchi A, Kaisary AV, Pignatelli M. Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer research. 1997;57:3189-93.
210. Bryden AA, Hoyland JA, Freemont AJ, Clarke NW, Schembri Wismayer D, George NJ. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases. BJU international. 2002;89:400-3.
211. Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, et al. Cadherin switching in human prostate cancer progression. Cancer research. 2000;60:3650-4.
212. Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welen K. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocrine-related cancer. 2010;17:469-79.
213. Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T, et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature medicine. 2010;16:1414-20.
214. Martorana AM, Zheng G, Crowe TC, O′Grady RL, Lyons JG. Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer research. 1998;58:4970-9.
215. Tian TV, Tomavo N, Huot L, Flourens A, Bonnelye E, Flajollet S, et al. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene. 2014;33:2204-14.
216. Uygur B, Wu WS. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Molecular cancer. 2011;10:139.
217. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology. 2000;2:84-9.
218. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature cell biology. 2000;2:76-83.
219. Wang H, Fang R, Wang XF, Zhang F, Chen DY, Zhou B, et al. Stabilization of Snail through AKT/GSK-3beta signaling pathway is required for TNF-alpha-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. European journal of pharmacology. 2013;714:48-55.
220. Wu M, Bai X, Xu G, Wei J, Zhu T, Zhang Y, et al. Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression. Proteomics. 2007;7:1973-83.
221. Benelli R, Monteghirfo S, Vene R, Tosetti F, Ferrari N. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Molecular cancer. 2010;9:142.
222. Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network. Cancer letters. 2013;336:379-89.
223. Yu G, Lee YC, Cheng CJ, Wu CF, Song JH, Gallick GE, et al. RSK promotes prostate cancer progression in bone through ING3, CKAP2, and PTK6-mediated cell survival. Molecular cancer research : MCR. 2015;13:348-57.
224. Bruxvoort KJ, Charbonneau HM, Giambernardi TA, Goolsby JC, Qian CN, Zylstra CR, et al. Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer research. 2007;67:2490-6.
225. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20:4188-97.
226. Sasaki T, Nakashiro K, Tanaka H, Azuma K, Goda H, Hara S, et al. Knockdown of Akt isoforms by RNA silencing suppresses the growth of human prostate cancer cells in vitro and in vivo. Biochemical and biophysical research communications. 2010;399:79-83.
227. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & development. 1993;7:812-21.
228. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672-7.
229. Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochimica et biophysica acta. 2012;1825:11-7.
230. Kladney RD, Cardiff RD, Kwiatkowski DJ, Chiang GG, Weber JD, Arbeit JM, et al. Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice. Cancer research. 2010;70:8937-47.
231. Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway. Trends in biochemical sciences. 2004;29:32-8.
232. Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. The Journal of biological chemistry. 2002;277:35364-70.
233. Kaper F, Dornhoefer N, Giaccia AJ. Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer research. 2006;66:1561-9.
234. Jeong JH, Wang Z, Guimaraes AS, Ouyang X, Figueiredo JL, Ding Z, et al. BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PloS one. 2008;3:e3949.
235. Hong SK, Jeong JH, Chan AM, Park JI. AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion. Experimental cell research. 2013;319:1732-43.
236. Sharma A, Sharma AK, Madhunapantula SV, Desai D, Huh SJ, Mosca P, et al. Targeting Akt3 signaling in malignant melanoma using isoselenocyanates. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15:1674-85.
237. Leontieva OV, Lenzo F, Demidenko ZN, Blagosklonny MV. Hyper-mitogenic drive coexists with mitotic incompetence in senescent cells. Cell cycle. 2012;11:4642-9.
指導教授 高永旭(Yung-Hsu Kao) 審核日期 2016-5-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明