博碩士論文 992404005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.119.125.135
姓名 彭軒鈺(Hsuan-Yu Peng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討JAK/STAT /SOCS 之訊息傳導路徑於口腔癌細胞的調控機轉
(Regulatory Mechanisms of JAK/STAT/SOCS Signaling Pathways in Oral Cancer Cells)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響
★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控
★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用
★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ Viscolin對不同免疫細胞發炎反應的影響★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細胞因子信號轉導抑制因子(Suppressor of cytokine signaling, SOCS)蛋白家族有八名成員,即SOCS1~7及CIS。SOCS 蛋白家族主要結構有:N 端可變區、SH2 結構域和SOCS 區域 (SOCS box)。其中SH2 結構域和SOCS 區域是SOCS 調節信號轉導途徑所必需的功能區域,具有負回饋抑制JAK/STAT (janus kinase/signal transducer and activator of transcription) 訊息傳導的功能。近年來,發現SOCS家族成員在癌症中發揮重要作用,但仍然有許多功能和機制還需要進一步探討及研究。在本論文第一部分的研究裡我們發現到40對口腔癌患者的SOCS2蛋白表現量較低,與目前研究發現在許多實體器官惡性腫瘤中SOCS2 的表現受到抑制不謀而合。加上這幾年microRNA(簡稱miRNA)在癌症的角色愈發重要,所以我們想要探討miRNA在口腔癌是否扮演抑制SOCS2的角色。我們利用miRNA資料庫來預測可能標靶SOCS2的miRNA,發現miR-424-5p在病人miRNA array與兩個miRNA資料庫是唯一重疊的miRNA。我們之後證明當在口腔癌細胞抑制miR-424-5p表現可以增加SOCS2蛋白的表達及抑制STAT5活化。我們也發現白細胞介素-8 (Interleukin-8,IL-8)會增加miR-424-5p的表現,進一步抑制SOCS2表達而活化STAT5訊號路徑,最後導致口腔癌細胞的遷移、入侵。有趣的是,我們發現IL-8是透過活化STAT5而誘導miR-424-5p表現上升,導致口腔癌細胞的侵襲和轉移。這部分的研究結果,我們確定了一種新的機制, mir-424-5p導致的口腔癌進展,是建立在IL-8、mir-424-5p、SOCS2和STAT5信號通路之間的功能性連接。在第二部分的研究,我們主要探討新穎微管抑制劑MPT0B098 對口腔癌細胞的影響。MPT0B098是根據亞培藥廠第二期人體臨床試驗之ABT-751結構、設計並合成全新骨架的磺胺類小分子化合物。在我們實驗結果發現 MPT0B098會抑制口腔癌細胞株的生長,並誘導口腔癌細胞發生細胞凋亡。同時,我們也發現MPT0B098抑制JAK/STAT3訊息傳導的功能是透過誘導口腔癌細胞中SOCS3蛋白量。由於目前沒有人探討微小管和SOCS3之間的關係,在我們的研究發現微小管和SOCS3有密切的關係,或許 SOCS3可以是用於MPT0B098治療潛在的治療靶。我們也發現MPT0B098結合順鉑或5-FU所抑制口腔癌細胞的效果,比順鉑結合5-FU為比更好。
在這些研究中,我們希望這個微管蛋白抑製劑,MPT0B098,可以做為治療口腔癌的潛力發展藥物。從以上實驗中我們得知SOCS2 和SOCS3 在口腔癌發生的過程中,扮演重要的抑癌基因角色,也在上述的實驗發現 JAK/STAT 訊息路徑中的負回饋調節者 (例如SOCS2 和SOCS3),不僅可受到藥物誘導也可被其他機轉調控,這對於未來口腔癌治療藥物的開發及應用有很大的幫助及發展。
摘要(英) The family of suppressors of cytokine signaling (SOCS) consists of eight members, including SOCS1–7 and CIS. The main structure of SOCS includes a variant region at the N-terminus, SH2 domain, and SOCS box. The SH2 domain and SOCS box are the essential regions for regulating the signaling pathway, with the negative feedback inhibition of janus kinase/signal transducer and activator of transcription (JAK/STAT). In recent years, SOCS family members have been found to play important roles in cancer. However, many functions and mechanisms still need further identification and validation. In the first part of the study, we found that the SOCS2 expression level was lower in 40 patients with oral cancer, and this is consistent with the current findings that SOCS2 expression is inhibited in many malignant solid tumors. Recently, the role of microRNA (miRNA) in cancers development has attracted more attention. Thus, we attempted to investigate the role of miRNA in inhibiting SOCS2 in oral cancer. Using targeting algorithms (miRNAmap and microRNA.org) combined with OSCC patients′ miRNA microarray data, we wanted to search for putative miRNAs that might bind to SOCS2 mRNA. Based on the computational screening, we identified one miRNA, miR-424-5p, which was significantly upregulated in OSCC tumors compared with their corresponding normal samples (p < 0.0001). We later proved that the inhibition of miR-424-5p expression in oral cancer cells increased SOCS2 expression and inhibits STAT5 activity. It was also shown that interleukin-8 (IL-8) increases miR-424-5p expression, further inhibited SOCS2 expression, and activated STAT5 signaling pathway. Interestingly, IL-8 induces miR-424-5p expression, resulting in the proliferation and invasion of oral cancer cells via activating STAT5. From these results, a new mechanism was established, i.e., miR-424-5p mediates the progression of oral cancer by functionally connecting the signaling pathway among IL-8, miR-424-5p, SOCS2, and STAT5. In the second part of the study, the effect of a novel microtubule inhibitor, MPT0B098, on oral cancer cells was investigated. MPT0B098 is a newly synthesized sulfonamide-type small-molecule compound that was designed based on the structure of ABT-751, which was at Phase II clinical trial from Abbott. The results showed that MPT0B098 inhibited the growth of oral cancer cell lines and induced apoptosis in oral cancer cells. It was found that MPT0B098 inhibited JAK/STAT3 signaling via increasing the protein level of SOCS3 in oral cancer cells. The relationship between microtubule and SOCS3 is currently unknown, and our study showed that microtubule is closely related to SOCS3. Therefore, SOCS3 could be a potential treatment target for MPT0B098 treatment. The effect of inhibiting cancer cell lines by combining MPT0B098 with either cisplatin or 5-fluorouracil (FU) was found to be better than that by combining cisplatin and 5-FU. In these studies, we hope to show that this microtubule inhibitor, MPT0B098, could be a promising treatment for cancers. This thesis found that the SOCS family plays a pivotal role in oral cancer. We also found a new possible SOCS regulation pathway in these two studies that can help us to understand the effects of other factors (drug or miRNA) on SOCS cell signaling-related reactions, including migration, invasion and cell proliferation.
關鍵字(中) ★ 口腔癌
★ 微小核醣核酸
★ 細胞因子信號轉導抑制因子
★ 微管蛋白抑製劑
關鍵字(英) ★ Oral cancer
★ MicroRNA
★ Suppressors of cytokine signaling
★ Microtubule inhibitor
論文目次 Table of Contents
Declaration I
Publications arising from this thesis II~ III
(A) Referred papers:
(B) Abstracts presented in meetings:
中文摘要 IV~V
Abstract VI ~ VII
Acknowledgments VIII~IX
Table of Contents X~ XIV
Figure Contents XIII
Figure Contents XIV
Abbreviations XV
Chapter One: Introduction 1~11
1-1 Oral cancer 1~2
1-2 SOCS Regulation of the JAK/STAT Signaling Pathway 2~4
1-3 MicroRNAs and miRNA regulation of SOCS 5
1-4 Cytokines regulates microRNAs 6
1-5 Microtubules and tubulin inhibitors 6~9
1-6 Tubulin inhibitors and STAT3 of study 9~10
1-7 Down-regulation of Stat3 induces apoptosis 10~11
Chapter Two: Specific aims 12~13
Chapter Three: Materials and methods 14~26
3-1 Clinical samples and clinicopathological characteristics 14
3-2 Immunohistochemistry 14~15
3-3 Cell lines and culture condition 15~16
3-4 Culture and Storage of Human Oral Keratinocytes 16~17
3-5 RNA extraction and Reverse-Transcriptase PCR (RT-PCR) 17~18
3-6 Quantitative Real-Time PCR (qRT-PCR) 18
3-7 Plasmids 18~19
3-8 Transfection experiments 19~20
3-9 Protein extraction and western blot analysis 20~21
3-10 Luciferase Reporter Assays 21
3-11 Cell Migration and Invasion Assay 21~22
3-12 Preparation of monomer and polymer fractions of microtubule 22
3-13 Cell viability assay 23
3-14 Cell cycle analysis 23
3-15 Apoptosis assay 23~24
3-16 Immunofluorescent staining and microscopy 24
3-17 Cytokines treatment 25
3-18 Immunoprecipitations 25
3-19 Statistical analysis 25~26
Chapter Four: Result 27~77
4-1 IL8 Induces miR-424-5p Expression and Modulates SOCS2/STAT5 Signaling Pathway in Oral Cancer 27~53
Rationale 27~29
4-1-1 GSEA showed that KEGG Chemokine and/or cytokines and/or JAK/STAT 29
4-1-2 Downregulation of SOCS2 in human OSCC in comparison with adjacent non-tumor tissues 29~30
4-1-3 SOCS2 mediates cellular functions through STAT5 inhibition 30~31
4-1-4 SOCS2 is a direct target of miR-424-5p 31~32
4-1-5 miR-424-5p promotes OSCC cell invasion and migration through direct inhibition of SOCS2 expression 32~33
4-1-6 IL-8 induce miR-424-5p expression through activation of STAT5 33~34
4-1-7 IL-8 promotes OSCC cell invasion and migration through direct induction of miR-424-5p 35
Table and Figure 36~53
4-2 MPT0B098, a microtubule inhibitor, suppresses JAK2/STAT3 signaling pathway through modulation of SOCS3 expression in oral squamous cell carcinoma 54~77
Rationale 54~55
4-2-1 MPT0B098 inhibits the proliferation and tubulin polymerization in OSCC cells
55~56
4-2-2 MPT0B098 induces cell cycle arrest and apoptosis in OSCC cells 56~57
4-2-3 MPT0B098 down-regulates the protein level and activity of JAK2, TYK2 and STAT3 protein 57~58
4-2-4 MPT0B098 down-regulates JAK2, TYK2 and STAT3 through SOCS3 negative feedback modulation 58~59
4-2-5 MPT0B098 promotes SOCS3 binding to JAK2 and TYK2 59~60
4-2-6 MPT0B098 in combination with cisplatin or 5-FU significantly induces apoptosis in OSCC cells 60~61
Table and Figure 62~77
Chapter Five: Discussion 78~84
Chapter Six: General discussion and future work 85~93
Chapter Seven: References 94~117
Appendix: Experimental Drug of formulation 118~121
參考文獻 7. References
1. Pillai-Nair N, Panicker AK, Rodriguiz RM, Gilmore KL, Demyanenko GP, Huang JZ, Wetsel WC and Maness PF. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2005; 25(18):4659-4671.

2. Lo WL, Kao SY, Chi LY, Wong YK and Chang RC. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2003; 61(7):751-758.

3. Wong YK, Tsai WC, Lin JC, Poon CK, Chao SY, Hsiao YL, Chan MY, Cheng CS, Wang CC, Wang CP and Liu SA. Socio-demographic factors in the prognosis of oral cancer patients. Oral oncology. 2006; 42(9):893-906.

4. Chen YK, Huang HC, Lin LM and Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral oncology. 1999; 35(2):173-179.
5. Das BR and Nagpal JK. Understanding the biology of oral cancer. Medical science monitor : international medical journal of experimental and clinical research. 2002; 8(11):RA258-267.

6. Chung CH, Yang YH, Wang TY, Shieh TY and Warnakulasuriya S. Oral precancerous disorders associated with areca quid chewing, smoking, and alcohol drinking in southern Taiwan. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2005; 34(8):460-466.

7. Ho PS, Ko YC, Yang YH, Shieh TY and Tsai CC. The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2002; 31(4):213-219.

8. Nair U, Bartsch H and Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004; 19(4):251-262.

9. Lee CH, Ko YC, Huang HL, Chao YY, Tsai CC, Shieh TY and Lin LM. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. British journal of cancer. 2003; 88(3):366-372.

10. Ord RA and Blanchaert RH, Jr. Current management of oral cancer. A multidisciplinary approach. Journal of the American Dental Association. 2001; 132 Suppl:19S-23S.

11. Zain RB. Cultural and dietary risk factors of oral cancer and precancer--a brief overview. Oral oncology. 2001; 37(3):205-210.

12. Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z, Vourvachis M, Karavidas K, Jay A, Sandison A, Thomas GJ, Kalavrezos N and Hopper C. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol. 2010; 2:9.

13. Ahomadegbe JC, Barrois M, Fogel S, Le Bihan ML, Douc-Rasy S, Duvillard P, Armand JP and Riou G. High incidence of p53 alterations (mutation, deletion, overexpression) in head and neck primary tumors and metastases; absence of correlation with clinical outcome. Frequent protein overexpression in normal epithelium and in early non-invasive lesions. Oncogene. 1995; 10(6):1217-1227.

14. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, Trevino L, Drummond JA, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011; 333(6046):1154-1157.

15. Callender T, el-Naggar AK, Lee MS, Frankenthaler R, Luna MA and Batsakis JG. PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994; 74(1):152-158.

16. Mishima K, Yamada E, Masui K, Shimokawara T, Takayama K, Sugimura M and Ichijima K. Overexpression of the ERK/MAP kinases in oral squamous cell carcinoma. Mod Pathol. 1998; 11(9):886-891.

17. Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, Lu Y, Zhang Q, Du Y, Gilbert BR, Freilino M, Sauerwein S, Peyser ND, Xiao D, Diergaarde B, Wang L, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013; 3(7):761-769.

18. Maxwell SA, Sacks PG, Gutterman JU and Gallick GE. Epidermal growth factor receptor protein-tyrosine kinase activity in human cell lines established from squamous carcinomas of the head and neck. Cancer Res. 1989; 49(5):1130-1137.

19. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y and Kim JD. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A. 2000; 97(8):4227-4232.

20. Xia Z, Baer MR, Block AW, Baumann H and Wetzler M. Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer research. 1998; 58(14):3173-3180.

21. Leong PL, Xi S, Drenning SD, Dyer KF, Wentzel AL, Lerner EC, Smithgall TE and Grandis JR. Differential function of STAT5 isoforms in head and neck cancer growth control. Oncogene. 2002; 21(18):2846-2853.

22. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS and Tweardy DJ. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. The Journal of clinical investigation. 1998; 102(7):1385-1392.

23. Song JI and Grandis JR. STAT signaling in head and neck cancer. Oncogene. 2000; 19(21):2489-2495.

24. Inagaki-Ohara K, Kondo T, Ito M and Yoshimura A. SOCS, inflammation, and cancer. JAKSTAT. 2013; 2(3):e24053.

25. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, Raubitschek A, Hoon DS, Forman S, Figlin RA, Liu J, Jove R, et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer cell. 2012; 21(5):642-654.

26. Egami H, Kamohara H, Mita S and Ogawa M. [Involvement of cytokines in invasion and metastasis of colon cancer]. Nihon Geka Gakkai zasshi. 1998; 99(7):425-429.
27. Korostoff A, Reder L, Masood R and Sinha UK. The role of salivary cytokine biomarkers in tongue cancer invasion and mortality. Oral oncology. 2011; 47(4):282-287.

28. Ravandi F, Talpaz M and Estrov Z. Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003; 9(2):535-550.

29. Biswas SK and Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010; 11(10):889-896.

30. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D and Yu H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature medicine. 2005; 11(12):1314-1321.

31. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D and Yu H. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer cell. 2009; 15(2):114-123.

32. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H and Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of clinical investigation. 2008; 118(10):3367-3377.

33. Barash I. Stat5 in breast cancer: potential oncogenic activity coincides with positive prognosis for the disease. Carcinogenesis. 2012; 33(12):2320-2325.

34. Shuai K and Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003; 3(11):900-911.

35. Benekli M, Baer MR, Baumann H and Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood. 2003; 101(8):2940-2954.

36. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res. 2007; 13(5):1362-1366.

37. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL and Xie K. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003; 22(3):319-329.

38. Lin TY, Fenger J, Murahari S, Bear MD, Kulp SK, Wang D, Chen CS, Kisseberth WC and London CA. AR-42, a novel HDAC inhibitor, exhibits biologic activity against malignant mast cell lines via down-regulation of constitutively activated Kit. Blood. 2010; 115(21):4217-4225.

39. Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2002; 2(6):410-416.

40. Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H and Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arteriosclerosis, thrombosis, and vascular biology. 2011; 31(5):980-985.

41. Bullock AN, Debreczeni JE, Edwards AM, Sundstrom M and Knapp S. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc Natl Acad Sci U S A. 2006; 103(20):7637-7642.

42. Starr R and Hilton DJ. Negative regulation of the JAK/STAT pathway. Bioessays. 1999; 21(1):47-52.

43. Haan S, Ferguson P, Sommer U, Hiremath M, McVicar DW, Heinrich PC, Johnston JA and Cacalano NA. Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation. The Journal of biological chemistry. 2003; 278(34):31972-31979.

44. Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Jr., Conaway RC and Conaway JW. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes & development. 1998; 12(24):3872-3881.

45. Sasaki A, Inagaki-Ohara K, Yoshida T, Yamanaka A, Sasaki M, Yasukawa H, Koromilas AE and Yoshimura A. The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. The Journal of biological chemistry. 2003; 278(4):2432-2436.

46. Siewert E, Muller-Esterl W, Starr R, Heinrich PC and Schaper F. Different protein turnover of interleukin-6-type cytokine signalling components. European journal of biochemistry / FEBS. 1999; 265(1):251-257.

47. Palmer DC and Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends in immunology. 2009; 30(12):592-602.

48. Vitali C, Bassani C, Chiodoni C, Fellini E, Guarnotta C, Miotti S, Sangaletti S, Fuligni F, De Cecco L, Piccaluga PP, Colombo MP and Tripodo C. SOCS2 Controls Proliferation and Stemness of Hematopoietic Cells under Stress Conditions and Its Deregulation Marks Unfavorable Acute Leukemias. Cancer Res. 2015; 75(11):2387-2399.

49. Carow B and Rottenberg ME. SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol. 2014; 5:58.

50. Alexander WS, Starr R, Metcalf D, Nicholson SE, Farley A, Elefanty AG, Brysha M, Kile BT, Richardson R, Baca M, Zhang JG, Willson TA, Viney EM, Sprigg NS, Rakar S, Corbin J, et al. Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. Journal of leukocyte biology. 1999; 66(4):588-592.

51. Diamond P, Doran P, Brady HR and McGinty A. Suppressors of cytokine signalling (SOCS): putative modulators of cytokine bioactivity in health and disease. J Nephrol. 2000; 13(1):9-14.

52. Qiu X, Zheng J, Guo X, Gao X, Liu H, Tu Y and Zhang Y. Reduced expression of SOCS2 and SOCS6 in hepatocellular carcinoma correlates with aggressive tumor progression and poor prognosis. Mol Cell Biochem. 2013; 378(1-2):99-106.

53. Letellier E, Schmitz M, Baig K, Beaume N, Schwartz C, Frasquilho S, Antunes L, Marcon N, Nazarov PV, Vallar L, Even J and Haan S. Identification of SOCS2 and SOCS6 as biomarkers in human colorectal cancer. Br J Cancer. 2014; 111(4):726-735.

54. Francipane MG, Eterno V, Spina V, Bini M, Scerrino G, Buscemi G, Gulotta G, Todaro M, Dieli F, De Maria R and Stassi G. Suppressor of cytokine signaling 3 sensitizes anaplastic thyroid cancer to standard chemotherapy. Cancer Res. 2009; 69(15):6141-6148.

55. Levy DE and Darnell JE. STATs: Transcriptional control and biological impact. Nat Rev Mol Cell Bio. 2002; 3(9):651-662.

56. Ketting RF. microRNA Biogenesis and Function : An overview. Adv Exp Med Biol. 2011; 700:1-14.

57. Castanotto D and Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009; 457(7228):426-433.

58. Zhao XD, Zhang W, Liang HJ and Ji WY. Overexpression of miR -155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PloS one. 2013; 8(2):e56395.

59. Wu T, Xie M, Wang X, Jiang X, Li J and Huang H. miR-155 modulates TNF-alpha-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone. 2012; 51(3):498-505.

60. Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Kong J, Thadhani R and Li YC. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. Journal of immunology. 2013; 190(7):3687-3695.

61. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF and Wang ED. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010; 70(8):3119-3127.

62. Collins AS, McCoy CE, Lloyd AT, O′Farrelly C and Stevenson NJ. miR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling. PloS one. 2013; 8(7):e69090.

63. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D and Ferrara N. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO journal. 2012; 31(17):3513-3523.
64. Hu G, Zhou R, Liu J, Gong AY and Chen XM. MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection. The Journal of infectious diseases. 2010; 202(1):125-135.

65. Ru P, Steele R, Hsueh EC and Ray RB. Anti-miR-203 Upregulates SOCS3 Expression in Breast Cancer Cells and Enhances Cisplatin Chemosensitivity. Genes Cancer. 2011; 2(7):720-727.

66. Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Huspenina J, Bader FG, Greten FR and Hermeking H. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014; 124(4):1853-1867.

67. Rokavec M, Wu W and Luo JL. IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Molecular cell. 2012; 45(6):777-789.

68. Parlato S, Bruni R, Fragapane P, Salerno D, Marcantonio C, Borghi P, Tataseo P, Ciccaglione AR, Presutti C, Romagnoli G, Bozzoni I, Belardelli F and Gabriele L. IFN-alpha regulates Blimp-1 expression via miR-23a and miR-125b in both monocytes-derived DC and pDC. PLoS One. 2013; 8(8):e72833.

69. Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M and Bazzoni F. IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A. 2012; 109(45):E3101-3110.

70. Conde C and Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009; 10(5):319-332.

71. Jordan MA and Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004; 4(4):253-265.

72. McGrogan BT, Gilmartin B, Carney DN and McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta. 2008; 1785(2):96-132.

73. Valiron O, Caudron N and Job D. Microtubule dynamics. Cell Mol Life Sci. 2001; 58(14):2069-2084.

74. Chang JY, Lai MJ, Chang YT, Lee HY, Cheng YC, Kuo CC, Su MC, Chang CY and Liou JP. Synthesis and biological evaluation of 7-arylindoline-1-benzenesulfonamides as a novel class of potent anticancer agents. Medchemcomm. 2010; 1(2):152-155.

75. Cheng YC, Liou JP, Kuo CC, Lai WY, Shih KH, Chang CY, Pan WY, Tseng JT and Chang JY. MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1alpha mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR. Mol Cancer Ther. 2013; 12(7):1202-1212.

76. Walker SR, Chaudhury M, Nelson EA and Frank DA. Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling. Mol Pharmacol. 2010; 78(5):903-908.

77. Fernandez DJ, Tuma DJ and Tuma PL. Hepatic microtubule acetylation and stability induced by chronic alcohol exposure impair nuclear translocation of STAT3 and STAT5B, but not Smad2/3. Am J Physiol Gastrointest Liver Physiol. 2012; 303(12):G1402-1415.

78. Walker SR, Chaudhury M and Frank DA. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents. Mol Cell Pharmacol. 2011; 3(1):13-19.

79. Ng DC, Ng IH, Yeap YY, Badrian B, Tsoutsman T, McMullen JR, Semsarian C and Bogoyevitch MA. Opposing actions of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) in regulating microtubule stabilization during cardiac hypertrophy. J Biol Chem. 2011; 286(2):1576-1587.

80. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V and Cao X. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol. 2006; 172(2):245-257.

81. Verma NK, Dourlat J, Davies AM, Long A, Liu WQ, Garbay C, Kelleher D and Volkov Y. STAT3-stathmin interactions control microtubule dynamics in migrating T-cells. J Biol Chem. 2009; 284(18):12349-12362.

82. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4):495-516.

83. Brown JM and Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 2005; 5(3):231-237.

84. Kirkin V, Joos S and Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004; 1644(2-3):229-249.

85. Sellers WR and Fisher DE. Apoptosis and cancer drug targeting. J Clin Invest. 1999; 104(12):1655-1661.

86. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E and Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013; 14:32.

87. O′Brien MA, Moravec RA and Riss TL. Poly (ADP-Ribose) polymerase cleavage monitored in situ in apoptotic cells. Biotechniques. 2001; 30(4):886-+.

88. Chaitanya GV, Steven AJ and Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010; 8.

89. Wang X, Goldstein D, Crowe PJ, Yang M, Garrett K, Zeps N and Yang JL. Overcoming resistance of targeted egfr monotherapy by inhibition of stat3 escape pathway in soft tissue sarcoma. Oncotarget. 2016.

90. Wong SM, Liu FH, Lee YL and Huang HM. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells. PLoS One. 2016; 11(1):e0148093.

91. Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, Kondo S, Priebe W and Kondo Y. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene. 2007; 26(17):2435-2444.

92. Zhou J, Ning Z, Wang B, Yun EJ, Zhang T, Pong RC, Fazli L, Gleave M, Zeng J, Fan J, Wang X, Li L, Hsieh JT, He D and Wu K. DAB2IP loss confers the resistance of prostate cancer to androgen deprivation therapy through activating STAT3 and inhibiting apoptosis. Cell Death Dis. 2015; 6:e1955.

93. Yu H, Pardoll D and Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009; 9(11):798-809.

94. Bhattacharya S, Ray RM and Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J. 2005; 392(Pt 2):335-344.

95. Siddiquee KAZ and Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008; 18(2):254-267.

96. Gundersen GG, Khawaja S and Bulinski JC. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol. 1987; 105(1):251-264.

97. Forastiere A, Koch W, Trotti A and Sidransky D. Head and neck cancer. N Engl J Med. 2001; 345(26):1890-1900.

98. Jemal A, Siegel R, Ward E, Murray T, Xu J and Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57(1):43-66.

99. Callender T, Elnaggar AK, Lee MS, Frankenthaler R, Luna HA and Batsakis JG. Prad-1 (Ccnd1) Cyclin D1 Oncogene Amplification in Primary Head and Neck Squamous-Cell Carcinoma. Cancer. 1994; 74(1):152-158.

100. Siavash H, Nikitakis NG and Sauk JJ. Signal transducers and activators of transcription: Insights into the molecular basis of oral cancer. Crit Rev Oral Biol M. 2004; 15(5):298-307.

101. Darnell JE. STATs and gene regulation. Science. 1997; 277(5332):1630-1635.

102. Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H and Yoshimura A. Suppressors of Cytokine Signaling (SOCS) Proteins and JAK/STAT Pathways Regulation of T-Cell Inflammation by SOCS1 and SOCS3. Arterioscl Throm Vas. 2011; 31(5):980-985.

103. Palmer DC and Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 2009; 30(12):592-602.
104. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Forster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW and Alexander WS. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol. 2003; 4(6):540-545.

105. Vlotides G, Sorensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R and Auernhammer CJ. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Bioph Res Co. 2004; 320(3):1007-1014.

106. Xia Z, Baer MR, Block AMW, Baumann H and Wetzler M. Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Research. 1998; 58(14):3173-3180.

107. Bito T, Sumita N, Nakajima K and Nishigori C. Requirement of Stat3 for cell growth, but not for cell viability in cutaneous squamous cell carcinoma. J Invest Dermatol. 2005; 124(4):A82-A82.

108. Leong PL, Xi SC, Drenning SD, Dyer KF, Wentzel AL, Lerner EC, Smithgall TE and Grandis JR. Differential function of STAT5 isoforms in head and neck cancer growth control. Oncogene. 2002; 21(18):2846-2853.

109. Rossa C, Sommer G, Spolidorio LC, Rosenzweig SA, Watson DK and Kirkwood KL. Loss of Expression and Function of SOCS3 Is an Early Event in HNSCC: Altered Subcellular Localization as a Possible Mechanism Involved in Proliferation, Migration and Invasion. Plos One. 2012; 7(9).

110. Zhang PP, Li F, Li N, Zhu QQ, Yang CL, Han QY, Chen JH, Lv Y, Yu L, Wei P and Liu ZW. Genetic variations of SOCS1 are associated with chronic hepatitis B virus infection. Human Immunology. 2014; 75(8):709-714.

111. Zhang MY, Fung TK, Chen FY and Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. Journal of Cellular and Molecular Medicine. 2013; 17(10):1282-1290.

112. Sutherland KD, Lindeman GJ, Choong DYH, Wittlin S, Brentzell L, Phillips W, Campbell IG and Visvader JE. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004; 23(46):7726-7733.

113. Huang C, Li HD, Wu WD, Jiang T and Qiu ZJ. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncology Reports. 2013; 30(3):1223-1230.

114. Inui M, Martello G and Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Bio. 2010; 11(4):252-263.

115. Calin GA and Croce CM. MicroRNA-cancer connection: The beginning of a new tale. Cancer Research. 2006; 66(15):7390-7394.

116. Jiang SA, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF and Wang ED. MicroRNA-155 Functions as an OncomiR in Breast Cancer by Targeting the Suppressor of Cytokine Signaling 1 Gene. Cancer Research. 2010; 70(8):3119-3127.

117. Collins AS, McCoy CE, Lloyd AT, O′Farrelly C and Stevenson NJ. miR-19a: An Effective Regulator of SOCS3 and Enhancer of JAK-STAT Signalling. Plos One. 2013; 8(7).

118. Hu GK, Zhou R, Liu J, Gong AY and Chen XM. MicroRNA-98 and let-7 Regulate Expression of Suppressor of Cytokine Signaling 4 in Biliary Epithelial Cells in Response to Cryptosporidium parvum Infection. J Infect Dis. 2010; 202(1):125-135.

119. Zhuang GL, Wu XM, Jiang ZS, Kasman I, Yao J, Guan YH, Oeh J, Modrusan Z, Bais C, Sampath D and Ferrara N. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. Embo J. 2012; 31(17):3513-3523.

120. Shiah SG, Hsiao JR, Chang WM, Chen YW, Jin YT, Wong TY, Huang JS, Tsai ST, Hsu YM, Chou ST, Yen YC, Jiang SS, Shieh YS, Chang IS, Hsiao M and Chang JY. Downregulated miR329 and miR410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7b. Cancer research. 2014; 74(24):7560-7572.

121. Gutzman JH, Rugowski DE, Nikolai SE and Schuler LA. Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene. 2007; 26(43):6341-6348.

122. Sato BL, Sugawara A, Ward MA and Collier AC. Single blastomere removal from murine embryos is associated with activation of matrix metalloproteinases and Janus kinase/signal transducers and activators of transcription pathways of placental inflammation. Mol Hum Reprod. 2014; 20(12):1247-1257.

123. Klausen P, Pedersen L, Jurlander J and Baumann H. Oncostatin M and interleukin 6 inhibit cell cycle progression by prevention of p27kip1 degradation in HepG2 cells. Oncogene. 2000; 19(32):3675-3683.

124. Nishioka C, Ikezoe T, Yang J, Nobumoto A, Kataoka S, Tsuda M, Udaka K and Yokoyama A. CD82 regulates STAT5/IL-10 and supports survival of acute myelogenous leukemia cells. International journal of cancer Journal international du cancer. 2014; 134(1):55-64.

125. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Muller U, Murakami M, Radimerski T and Bentires-Alj M. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer cell. 2012; 22(6):796-811.

126. Manna SK and Ramesh GT. Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway. The Journal of biological chemistry. 2005; 280(8):7010-7021.

127. Yu H and Jove R. The STATs of cancer--new molecular targets come of age. Nat Rev Cancer. 2004; 4(2):97-105.

128. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002; 109(9):1139-1142.

129. Carpenter RL and Lo HW. STAT3 Target Genes Relevant to Human Cancers. Cancers (Basel). 2014; 6(2):897-925.

130. Macha MA, Matta A, Kaur J, Chauhan SS, Thakar A, Shukla NK, Gupta SD and Ralhan R. Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck. 2011; 33(4):482-489.

131. Masuda M, Wakasaki T, Suzui M, Toh S, Joe AK and Weinstein IB. Stat3 orchestrates tumor development and progression: the Achilles′ heel of head and neck cancers? Curr Cancer Drug Targets. 2010; 10(1):117-126.
132. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, Hirano T, Chien KR and Yoshimura A. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol. 2003; 4(6):551-556.

133. Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, Dietz A, Wittekind C and Tannapfel A. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene. 2005; 24(44):6699-6708.

134. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009; 45(4-5):309-316.

135. Keil F, Selzer E, Berghold A, Reinisch S, Kapp KS, De Vries A, Greil R, Bachtiary B, Tinchon C, Anderhuber W, Burian M, Kasparek AK, Elsasser W, Kainz H, Riedl R, Kopp M, et al. Induction chemotherapy with docetaxel, cisplatin and 5-fluorouracil followed by radiotherapy with cetuximab for locally advanced squamous cell carcinoma of the head and neck. Eur J Cancer. 2013; 49(2):352-359.

136. Zhang N, Yin Y, Xu SJ and Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008; 13(8):1551-1569.

137. Fang L, Wang H, Zhou L and Yu D. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells. Toxicol Appl Pharmacol. 2011; 251(1):8-15.

138. Sivanantham B, Sethuraman S and Krishnan UM. Combinatorial Effects of Curcumin with an Anti-Neoplastic Agent on Head and Neck Squamous Cell Carcinoma Through the Regulation of EGFR-ERK1/2 and Apoptotic Signaling Pathways. Acs Combinatorial Science. 2016; 18(1):22-35.

139. Wilken R, Veena MS, Wang MB and Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 2011; 10:12.

140. Vuong BQ, Arenzana TL, Showalter BM, Losman J, Chen XP, Mostecki J, Banks AS, Limnander A, Fernandez N and Rothman PB. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Mol Cell Biol. 2004; 24(20):9092-9101.

141. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, Yoshimura A, Reindl W, Sipos B, Akira S, Schmid RM and Algul H. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011; 19(4):456-469.

142. Sansone P and Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 2012; 30(9):1005-1014.

143. Croker BA, Kiu H and Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 2008; 19(4):414-422.

144. Huang C, Li H, Wu W, Jiang T and Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013; 30(3):1223-1230.

145. Zhang MY, Fung TK, Chen FY and Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med. 2013; 17(10):1282-1290.

146. Chen Z, Malhotra PS, Thomas GR, Ondrey FG, Duffey DC, Smith CW, Enamorado I, Yeh NT, Kroog GS, Rudy S, McCullagh L, Mousa S, Quezado M, Herscher LL and Van Waes C. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999; 5(6):1369-1379.

147. Watanabe H, Iwase M, Ohashi M and Nagumo M. Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol. 2002; 38(7):670-679.

148. St John MAR, Li Y, Zhou XF, Denny P, Ho CM, Montemagno C, Shi WY, Qi FX, Wu B, Sinha U, Jordan R, Wolinsky L, Park NH, Liu HH, Abemayor E and Wong DTW. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol. 2004; 130(8):929-935.

149. Trengove MC and Ward AC. SOCS proteins in development and disease. American journal of clinical and experimental immunology. 2013; 2(1):1-29.

150. Iglesias-Gato D, Chuan YC, Wikstrom P, Augsten S, Jiang N, Niu Y, Seipel A, Danneman D, Vermeij M, Fernandez-Perez L, Jenster G, Egevad L, Norstedt G and Flores-Morales A. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis. 2014; 35(1):24-33.

151. Farabegoli F, Ceccarelli C, Santini D and Taffurelli M. Suppressor of cytokine signalling 2 (SOCS-2) expression in breast carcinoma. J Clin Pathol. 2005; 58(10):1046-1050.

152. Newton VA, Ramocki NM, Scull BP, Simmons JG, McNaughton K and Lund PK. Suppressor of cytokine signaling-2 gene disruption promotes Apc(Min/+) tumorigenesis and activator protein-1 activation. The American journal of pathology. 2010; 176(5):2320-2332.

153. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Forster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW and Alexander WS. SOCS3 negatively regulates IL-6 signaling in vivo. Nature immunology. 2003; 4(6):540-545.

154. Vlotides G, Sorensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R and Auernhammer CJ. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochemical and biophysical research communications. 2004; 320(3):1007-1014.

155. Yang HL, Sun C, Sun C and Qi RL. Effect of suppressor of cytokine signaling 2 (SOCS2) on fat metabolism induced by growth hormone (GH) in porcine primary adipocyte. Mol Biol Rep. 2012; 39(9):9113-9122.

156. Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, Woelfle J, Ono M, Lenhard B, Norstedt G, Rotwein P and Flores-Morales A. In vivo transcript profiling and phylogenetic analysis identifies suppressor of cytokine signaling 2 as a direct signal transducer and activator of transcription 5b target in liver. Molecular endocrinology. 2007; 21(1):293-311.

157. Quentmeier H, Geffers R, Jost E, Macleod RA, Nagel S, Rohrs S, Romani J, Scherr M, Zaborski M and Drexler HG. SOCS2: inhibitor of JAK2V617F-mediated signal transduction. Leukemia. 2008; 22(12):2169-2175.

158. Fiegl H, Gattringer C, Widschwendter A, Schneitter A, Ramoni A, Sarlay D, Gaugg I, Goebel G, Muller HM, Mueller-Holzner E, Marth C and Widschwendter M. Methylated DNA collected by tampons--a new tool to detect endometrial cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004; 13(5):882-888.

159. Sutherland KD, Lindeman GJ, Choong DY, Wittlin S, Brentzell L, Phillips W, Campbell IG and Visvader JE. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004; 23(46):7726-7733.

160. Liu S, Ren S, Howell P, Fodstad O and Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment cell & melanoma research. 2008; 21(5):545-558.

161. Wu K, Hu G, He X, Zhou P, Li J, He B and Sun W. MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathology oncology research : POR. 2013; 19(4):739-748.

162. Park YT, Jeong JY, Lee MJ, Kim KI, Kim TH, Kwon YD, Lee C, Kim OJ and An HJ. MicroRNAs overexpressed in ovarian ALDH1-positive cells are associated with chemoresistance. Journal of ovarian research. 2013; 6(1):18.

163. Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S, Stenvold H, Al-Shibli K, Al-Saad S, Bremnes RM and Busund LT. MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PloS one. 2012; 7(1):e29671.

164. Li Q, Qiu XM, Li QH, Wang XY, Li L, Xu M, Dong M and Xiao YB. MicroRNA-424 may function as a tumor suppressor in endometrial carcinoma cells by targeting E2F7. Oncology reports. 2015; 33(5):2354-2360.

165. Xu J, Li Y, Wang F, Wang X, Cheng B, Ye F, Xie X, Zhou C and Lu W. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene. 2013; 32(8):976-987.

166. Zhou R, Gong AY, Chen D, Miller RE, Eischeid AN and Chen XM. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PloS one. 2013; 8(5):e65153.

167. Nishi M, Ryo A, Tsurutani N, Ohba K, Sawasaki T, Morishita R, Perrem K, Aoki I, Morikawa Y and Yamamoto N. Requirement for microtubule integrity in the SOCS1-mediated intracellular dynamics of HIV-1 Gag. FEBS Lett. 2009; 583(8):1243-1250.

168. Zou T, Ouyang L, Chen L, Dong W, Qiao H, Liu Y and Qi Y. The role of microtubule-associated protein 1S in SOCS3 regulation of IL-6 signaling. FEBS Lett. 2008; 582(29):4015-4022.

169. Brown ME, Bear MD, Rosol TJ, Premanandan C, Kisseberth WC and London CA. Characterization of STAT3 expression, signaling and inhibition in feline oral squamous cell carcinoma. BMC Vet Res. 2015; 11:206.

170. Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G and Sklavounou A. Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol Rep. 2014; 32(5):2175-2182.

171. Bu LL, Zhao ZL, Liu JF, Ma SR, Huang CF, Liu B, Zhang WF and Sun ZJ. STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell. Oncotarget. 2015; 6(39):41944-41958.

172. Bendell JC, Hong DS, Burris HA, 3rd, Naing A, Jones SF, Falchook G, Bricmont P, Elekes A, Rock EP and Kurzrock R. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol. 2014; 74(1):125-130.

173. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, Chauhan D, Anderson KC and Frank DA. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 2008; 112(13):5095-5102.

174. Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, Freilino ML, Shi H, Li C, Ly D, Rapireddy S, Etter JP, et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov. 2012; 2(8):694-705.

175. Lorch JH, Goloubeva O, Haddad RI, Cullen K, Sarlis N, Tishler R, Tan M, Fasciano J, Sammartino DE, Posner MR and Group TAXS. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol. 2011; 12(2):153-159.

176. Sivanantham B, Sethuraman S and Krishnan UM. Combinatorial Effects of Curcumin with an Anti-Neoplastic Agent on Head and Neck Squamous Cell Carcinoma Through the Regulation of EGFR-ERK1/2 and Apoptotic Signaling Pathways. ACS Comb Sci. 2016; 18(1):22-35.

177. Rossa C, Jr., Sommer G, Spolidorio LC, Rosenzweig SA, Watson DK and Kirkwood KL. Loss of expression and function of SOCS3 is an early event in HNSCC: altered subcellular localization as a possible mechanism involved in proliferation, migration and invasion. PloS one. 2012; 7(9):e45197.

178. Barclay JL, Anderson ST, Waters MJ and Curlewis JD. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int J Cancer. 2009; 124(8):1756-1766.

179. Sen B, Peng S, Woods DM, Wistuba I, Bell D, El-Naggar AK, Lai SY and Johnson FM. STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma. Clin Cancer Res. 2012; 18(1):127-139.

180. Mitchell TJ and John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 2005; 114(3):301-312.

181. Hussain S, Singh N, Salam I, Bandil K, Yuvaraj M, Akbar Bhat M, Muzaffar Mir M, Siddiqi MA, Sobti RC, Bharadwaj M and Das BC. Methylation-mediated gene silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kashmir valley. J Recept Signal Transduct Res. 2011; 31(2):147-156.

182. Tischoff I, Hengge UR, Vieth M, Ell C, Stolte M, Weber A, Schmidt WE and Tannapfel A. Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett′s adenocarcinoma. Gut. 2007; 56(8):1047-1053.

183. Hoefer J, Kern J, Ofer P, Eder IE, Schafer G, Dietrich D, Kristiansen G, Geley S, Rainer J, Gunsilius E, Klocker H, Culig Z and Puhr M. SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer. Endocr Relat Cancer. 2014; 21(2):175-187.

184. Zhou Y, Lv C, Wu C, Chen F, Shao Y and Wang Q. Suppressor of cytokine signaling (SOCS) 2 attenuates renal lesions in rats with diabetic nephropathy. Acta Histochem. 2014.

185. Seefried WF, Willmann MR, Clausen RL and Jenik PD. Global regulation of embryonic patterning in Arabidopsis by microRNAs. Plant Physiol. 2014.

186. Zhao H, Li H, Du W, Zhang D, Ge J, Xue F, Zhou Z and Yang R. Reduced MIR130A is involved in primary immune thrombocytopenia via targeting TGFB1 and IL18. Br J Haematol. 2014.

187. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W and Ning G. Decreased miR-146 Expression in Peripheral Blood Mononuclear Cell Correlated with Ongoing islet autoimmunity in Type 1 Diabetes Patients. J Diabetes. 2014.

188. Li J, Tan S, Kooger R, Zhang C and Zhang Y. MicroRNAs as novel biological targets for detection and regulation. Chem Soc Rev. 2014; 43(2):506-517.

189. Tan S, Wu Y, Zhang CY and Li J. Potential microRNA targets for cancer chemotherapy. Curr Med Chem. 2013; 20(29):3574-3581.

190. Banno K, Iida M, Yanokura M, Kisu I, Iwata T, Tominaga E, Tanaka K and Aoki D. MicroRNA in cervical cancer: OncomiRs and tumor suppressor miRs in diagnosis and treatment. ScientificWorldJournal. 2014; 2014:178075.

191. Zhang B, Pan X, Cobb GP and Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007; 302(1):1-12.

192. Yu L, Ding GF, He C, Sun L, Jiang Y and Zhu L. MicroRNA-424 is down-regulated in hepatocellular carcinoma and suppresses cell migration and invasion through c-Myb. PloS one. 2014; 9(3):e91661.

193. Pallasch CP, Patz M, Park YJ, Hagist S, Eggle D, Claus R, Debey-Pascher S, Schulz A, Frenzel LP, Claasen J, Kutsch N, Krause G, Mayr C, Rosenwald A, Plass C, Schultze JL, et al. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood. 2009; 114(15):3255-3264.

194. Faraoni I, Laterza S, Ardiri D, Ciardi C, Fazi F and Lo-Coco F. MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status. J Hematol Oncol. 2012; 5:26.

195. Oneyama C, Kito Y, Asai R, Ikeda J, Yoshida T, Okuzaki D, Kokuda R, Kakumoto K, Takayama K, Inoue S, Morii E and Okada M. MiR-424/503-mediated Rictor upregulation promotes tumor progression. PloS one. 2013; 8(11):e80300.

196. Kunze K, Gamerdinger U, Lessig-Owlanj J, Sorokina M, Brobeil A, Tur MK, Blau W, Burchardt A, Kabisch A, Schliesser G, Kiehl M, Rosenwald A, Rummel M, Grimminger F, Hain T, Chakraborty T, et al. Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis. Pathol Res Pract. 2014; 210(6):369-376.

197. Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, Cheng JQ and Chan EK. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem. 2012; 287(35):29261-29272.

198. Basu S and Bhattacharyya SN. Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Res. 2014.

199. Nagpal N, Ahmad HM, Molparia B and Kulshreshtha R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013; 34(8):1889-1899.

200. Juvekar A and Wulf GM. Closing escape routes: inhibition of IL-8 signaling enhances the anti-tumor efficacy of PI3K inhibitors. Breast cancer research : BCR. 2013; 15(2):308.

201. Wehinger J, Gouilleux F, Groner B, Finke J, Mertelsmann R and Weber-Nordt RM. IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS letters. 1996; 394(3):365-370.

202. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D and Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009; 206(7):1457-1464.

203. Yakob M, Fuentes L, Wang MB, Abemayor E and Wong DT. Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. Curr Oral Health Rep. 2014; 1(2):133-141.

204. Punyani SR and Sathawane RS. Salivary level of interleukin-8 in oral precancer and oral squamous cell carcinoma. Clin Oral Investig. 2013; 17(2):517-524.

205. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, Mao L, Wong DT and Zhou X. Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics. 2008; 9:69.

206. St John MA, Li Y, Zhou X, Denny P, Ho CM, Montemagno C, Shi W, Qi F, Wu B, Sinha U, Jordan R, Wolinsky L, Park NH, Liu H, Abemayor E and Wong DT. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004; 130(8):929-935.

207. Singh SR, Rameshwar P and Siegel P. Targeting tumor microenvironment in cancer therapy. Cancer Lett. 2016.

208. Zhang Y, Yang P and Wang XF. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol. 2014; 24(3):153-160.

209. Matteucci E, Maroni P, Disanza A, Bendinelli P and Desiderio MA. Coordinate regulation of microenvironmental stimuli and role of methylation in bone metastasis from breast carcinoma. Biochim Biophys Acta. 2016; 1863(1):64-76.

210. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013; 4(1):66-83.

211. Coussens LM and Werb Z. Inflammation and cancer. Nature. 2002; 420(6917):860-867.
212. Grivennikov SI, Greten FR and Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6):883-899.

213. Gwak JM, Jang MH, Kim DI, Seo AN and Park SY. Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One. 2015; 10(4):e0125728.

214. Xu H, Lai W, Zhang Y, Liu L, Luo X, Zeng Y, Wu H, Lan Q and Chu Z. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner. BMC Cancer. 2014; 14:330.

215. Williams CB, Yeh ES and Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016; 2.

216. Zheng XF, Hong YX, Feng GJ, Zhang GF, Rogers H, Lewis MA, Williams DW, Xia ZF, Song B and Wei XQ. Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression. PLoS One. 2013; 8(5):e63967.

217. Martinez FO and Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6:13.

218. Steube KG, Meyer C and Drexler HG. Multiple regulation of constitutive and induced interleukin 8 secretion in human myelomonocytic cell lines. Cytokine. 2000; 12(8):1236-1239.
指導教授 夏興國、金秀蓮(Shine-Gwo Shiah Shiow-Lian Catherine Jin) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明